PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallic Electroconductive Transmission Lines Obtained on Textile Substrates by Magnetron Sputtering

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metaliczne ścieżki elektroprzewodzące wytwarzane metodą rozpylania magnetronowego na podłożach tekstylnych
Języki publikacji
EN
Abstrakty
EN
The paper discusses the results of research concerning the formation of electroconductive transmission lines on textile substrates using the magnetron sputtering technique. The transmission lines developed can potentially be applied in clothing for emergency and security services to affect electrical connections between electronic elements incorporated in the garments. The time of metallic layer deposition and the type of substrate used was optimised in the study. The surface resistivity, resistance to bending and abrasion of the transmission lines obtained were tested. The tests demonstrated that it is possible to obtain electroconductive copper layers with a surface resistivity approximating 0.2 Ω by direct deposition on spun-bonded type polypropylene nonwoven.
PL
W pracy metodą rozpylania magnetronowego wytworzono ścieżki elektroprzewodzące na podłożach tekstylnych do zastosowania w odzieży dla służb bezpieczeństwa. Optymalizowano czas depozycji warstwy oraz rodzaj użytego substratu tekstylnego. Zbadano rezystywność powierzchniową, odporność na zginanie i ścieranie wytworzonych ścieżek.
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Knitting Technology and Textile Machines, Łódź, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Łódź, Poland
  • Lodz University of Technology, Institute of Electronics, Łódź, Poland
Bibliografia
  • 1. Leśnikowski J. Textile Transmission Lines in the Modern Textronic Clothes. FIBRES & TEXTILES in Eastern Europe 2011, 19, 6(89): 89-93.
  • 2. Brazis R, Kazakevičius V, Koprowska J. Electroconductive Textile Homogeneity Tests Using Microwave Transmission. FIBRES & TEXTILES in Eastern Europe 2009; 17, 3(74): 81-83.
  • 3. Frydrysiak M, Zięba J. Textronic Sensor for Monitoring Respiratory Rhythm. FIBRES & TEXTILES in Eastern Europe 2012; 20, 2(91): 74-78.
  • 4. Power E J, Dias T. Knitting of Electroconductive Yarns, The institution of Electrical Engineers. Printed and published by the IEE, Michael Faradav House. Six Hills Wav. Stevenaae, 2003 IEEE.
  • 5. Gilliland S, Komor N, Starner T, Zeagler C. The Textile Interface Swatchbook: Creating Graphical User Interface-like Widgets with Conductive Embroidery, www.ieeexplore.ieee.org, IEEE 2013.
  • 6. Linz T, Kallmayer Ch, Aschenbrenner R, Reichl H. Embroidering Electrical Interconnects with Conductive Yarn for The Integration of Flexible Electronic Modules into Fabric. Proceedings of the 2005 Ninth IEEE International Symposium on Wearable Computers, 2005 IEEE.
  • 7. Idzik M. Metallic and metalized yarns. Przegląd Włókienniczy. 2002, 11: 11-12.
  • 8. Alagirusamy R, Das A. Technical textile yarns. Industrial and Medical Application. Indian Institute of Technology, New Delhi, India, ISBN 1 84569 549 6.
  • 9. http://www.bekaert.com/
  • 10. http://www.shieldextrading.net
  • 11. Akbarov D, Baymuratov B, Akbarov R, Westbroek P, De Clerck K, Kiekens P. Optimizing Process Parameters in Polyacrylonitrile Production for Metallization with Nickel. Textile Research Journal 2005; 75: 197.
  • 12. Schwarz A, Hakuzimana J, Westbroek P, Van Langenhove L. How to equip para-aramide yarns with electro-conductive properties. www.ieeexplore.ieee.org, IEEE 2013.
  • 13. Maiti S, Das D, Sen K. Studies on Electro-Conductive Yarns Prepared by In Situ Chemical and Electrochemical Polymerization of Pyrrole. Journal of Applied Polymer Science 2012; 123: 455- 462 VC 2011 Wiley Periodicals, Inc.
  • 14. Skrzetuska E, Urbaniak-Domagała W, Lipp-Symonowicz B, Krucińska I. Printing of the electroconductive transmission lines on textiles. XIII Scientific Conference Faculty of Material Technologies and Textile Design, Lodz 2012, K-48 s.1-4.
  • 15. Krucińska I, Skrzetuska E, Urbaniak-Domagała W. Prototypes of carbon nanotube-based textile sensors manufactured by the screen printing method. FIBRES & TEXTILES in Eastern Europe 2012; 20, 2(91): 79-83.
  • 16. Kazani I, Hertleer C, De Mey G, Schwarz A, Guxho G, Van Langenhove L. Electrical Conductive Textiles Obtained by Screen Printing. FIBRES & TEXTILES in Eastern Europe 2012, 20, 1(90) 57-63.
  • 17. Gniotek K, Frydrysiak M, Zięba J, Tokarska M, Stepień Z. Innovative textile electrodes for muscles electro stimulation, www.ieeexplore.ieee.org, IEEE 2013.
  • 18. Seeberg TM, Royset A, Jahren S, Strisland F. Printed organic conductive polymers thermocouples in textile and smart clothing applications, Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE , Publication Year: 2011, Page(s): 3278 – 3281, IEEE 2011.
  • 19. Agrawal P, Petcu J, Gooijer H, Brinks G. Functional Ink-jet Printing on Textiles: Challenges and Opportunities, Saxion University of Applied Sciences, Deventer, 22 November 2012, electronic document.
  • 20. Shamal Kamalakar Mhetre. Effect of Fabric Structure and Liquid Transport, Inkjet Drop Spreading and Printing Quality, Georgia Institute of Technology, May 2009.
  • 21. Dobrzański LA. Fundamentals of material science and physical metallurgy. WNT, Warsaw 2002.
  • 22. Dobrzański LA. Developing the structure and properties of engineered and biomedical materials. Publication Gliwice 2009.
  • 23. Roth A, Riabkina-Fishman M, Zahavi, Rosen A. Deposition of superconductive thin films by laser PVD. Journal of Materials Science 1991; 26: 2967-2970.
  • 24. Mattox DM. The foundation of vacuum coating technology. Wiliam Anderew Publishing, 2003.
  • 25. Technology – Fundamentals, Etching, Deposition, and Surface Interactions, 1990 William Andrew Publishing/Noyes
  • 26. Luhin V, Zarapin V, Zharsky I, Zhukowski P. Sensor properties of thin SnO2 films formed by magnetron sputtering. Elektronika 2011, 11: 76-78.
  • 27. Posadowski W, Wiatrowski A, Tadaszak K, Kundzia J. Magnetron sputtering -technology and technique. Elektronika 2012, 2: 37-39.
  • 28. Halarewicz J, Posadowski W, Domanowski P, Wiatrowski A. Vacuum deposition of thin layers on large size glass substrates part I. Elektronika 2012, 4: 74-76.
  • 29. Nowak I, Niewiadomska I, Krucińska I, Januszkiewicz Ł. Testing Resistance of Metallic Layers Obtained on Nonwoven Substrates by Magnetron Sputtering And Heat Resistance to Utility Tests. XVI Scientific Conference of the Faculty of Material Technologies and Textile Design 2013 K48 pp. 43-48 K-48, conference materials
  • 30. Tadaszak K, Posadowski W. Model of high rate reactive pulsed magnetron sputtering. Elektronika 2011, 3: 69-71.
  • 31. Posadowski W. Development of magnetron sputtering technology and techniques. Elektronika 2009; 1: 35-38.
  • 32. Posadowski W. Wiatrowski A. Kudzia J, Brudnik A. Non-reactive pulsed magnetron sputtering process. Elektronika 2007; 10: 50-52.
  • 33. Kubsz I, Urbaniak-Domagała W, Krucińska I. Modern Electro-conductive Textiles Produces By The Method Of Physical Vapour Deposition (PVD), XIV Scientific Conference of Faculty of Material Technologies and Textile Design 2011, K-48 pp. 1-4
  • 34. Kubsz I. Modern textiles with special electroconductive properties obtained by PVD. Przegląd Włókienniczy Włókno Odzież Skóra 2011; 7-8: 44-48.
  • 35. Rossnagel SM, Cuomo JJ. Westwood WD. Handbook of Plasma Processing Technology – Fundamentals, Etching, Deposition, and Surface Interactions, 1990 William Andrew Publishing/Noyes.
  • 36. Ziaja J, Koprowska J, Janukiewicz J. Using plasma metallization for manufacture of textile screens against electromagnetic fields. FIBRES & TEXTILES in Eastern Europe 2008; 16, 5(70): 64-66.
  • 37. Depla D, Segers S, Leroy W, Hove T, Van Parys M. Smart textiles: an explorative study of the use of magnetron sputter deposition. Textile Research Journal 81(17), 2011: 1808-1817.
  • 38. Bula K, Koprowska J, Janukiewicz J. Application of Cathode Sputtering for Obtaining Ultra-thin Metallic Coatings on Textile Products. FIBRES & TEXTILES in Eastern Europe 2006; 14, 5(59): 75-79.
  • 39. Deng B, Wei Q, Gao W, Yan X. Surface Fictionalization of Nonwovens by Aluminum Sputter Coating. FIBERS & TEXTILES in Eastern Europe 2007; 15, 4(63), pp. 90-92.
  • 40. Ziaja J. ZnO thin film deposition with pulsed magnetron sputtering. Przegląd Elektrotechniczny 2007; 11, 235-237.
  • 41. Mania R, Godlewska E, Mars K, Morgiel J, Wolański R. Ceramic layers on textiles. Elektronika 2011; 11: 34-36.
  • 42. Pospieszna J, Jaroszewski M, Bretuj W. Tchórzewski M. Effect of surface and crossover resistance on dielectric properties of a composite system – carbon-coated polypropylene nonwoven obtained by plasma-assisted process. Przegląd Elektrotechniczny 2012; 5: 275-278.
  • 43. Pospieszna J, Jaroszewski M, Henrykowski A, Szafran G. Effect of the parameters of plasma-assisted process of carbon layer deposition onto polypropylene nonwoven on the form of the obtained layer. Przegląd Elektrotechniczny 2012; 5a:124-127.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-830e8395-7996-43d7-a62c-ff1aa6835d91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.