Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
Abstrakty
The subflorescence and efflorescence phenomena are widely acknowledged as the major causes of permanent damage to fresco wall paintings. They are related to the occurrence of cycles of dry/wet conditions inside the walls. Therefore, it is essential to identify the presence of water on the decorated surfaces and inside the walls. Nondestructive testing in industrial applications have confirmed that active infrared thermography with continuous timed images acquisition can improve the outcomes of thermal analysis aimed to moisture identification. In spite of that, in cultural heritage investigations these techniques have not been yet used extensively on a regular basis. This paper illustrates an application of these principles in order to evaluate the decay of fresco mural paintings in a medieval chapel located in North-West of Italy. One important feature of this study is the use of a robotic system called aIRview that can be utilized to automatically acquire and process thermal images. Multiple accurate thermal views of the inside walls of the building have been produced in a survey that lasted several days. Signal processing algorithms based on Fast Fourier Transform analysis have been applied to the acquired data in order to formulate trustworthy hypotheses about the deterioration mechanisms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
100--106
Opis fizyczny
Bibliogr. 25 poz., il., rys., tab.
Twórcy
autor
- Consiglio Nazionale delle Ricerche - ITC, Corso Stati Uniti 4, 35127 Padova, Italy
autor
- Consiglio Nazionale delle Ricerche - ITC, Corso Stati Uniti 4, 35127 Padova, Italy
autor
- Consiglio Nazionale delle Ricerche - ITC, Corso Stati Uniti 4, 35127 Padova, Italy
autor
- Consiglio Nazionale delle Ricerche - ITC, Corso Stati Uniti 4, 35127 Padova, Italy
autor
- Universita Iuav di Venezia - Santa Croce 191 Tolentini, 30135 Venezia, Italy
autor
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
autor
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Bibliografia
- 1. C. Rodriguez-Navarro and E. Doehnc, “Salt weathering: Influence of evaporation rate, super-saturation and crystallization pattern”, Earth Surf. Proc. Land. 24, 191-209 (1999).
- 2. D. Camuffo, Microclimate for Cultural Heritage: Conservation, Restoration, and Maintenance o f Indoor and Outdoor Monuments, Elsevier, New York, 2013.
- 3. H.E. Silva and F.M. A. Henriques, “Microclimatic analysis of historic buildings: A new methodology for temperate climates”, Build. Environ. 82, 381-387 (2014).
- 4. UNI 11085:2003 Beni culturali-Materiali lapidei naturali ed artificiali-Determinazione del contenuto d’acqua: Metodo ponderale. (In Italian).
- 5. EN 15758:2010 Conservation of cultural property. Procedures and instruments for measuring temperatures of the air and the surfaces of objects.
- 6. X. Maldague, Theory and Practice o f Infrared Technology for Nondestructive Testing, Wiley, Hoboken, 2001.
- 7. H. Budzier and G. Garlach, Thermal Infrared Sensors, Theory, Optimization and Practice, John Wiley & Sons, Hoboken, 2011.
- 8. S. Bagavathiappan, B.B. Lahiri, T. Saravanan, John Philip, and T. Jayakumar, “Infrared thermography for condition monitoring - A review”, Infrared Phys. Techn. 60, 35-55 (2013).
- 9. C. Meola, Infrared Thermography Recent Advances and Future Trends, Bentham eBooks, 2012.
- 10. E. Grinzato and E. Rosina, “Infrared and thermal testing for conservation of historic buildings”, in Nondestructive Testing Handbook, vol. 3, Infrared and Thermal Testing, X. Maldague ed., ASNT, 2001.
- 11. E. Grinzato, N. Ludwig, G. Cadelano, M. Bertucci, M. Gargano, and P. Bison, “Infrared thermography for moisture detection: a laboratory study and in-situ test”, Mater. Eval. 69, 97-104(2011).
- 12. D. Gavrilov, R.G. Maev, and D.P. Almond, “A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis”, Can. J. Phys. 92, 341-364 (2014).
- 13. G.M. Carlomagno and C. Meola, “Comparison between thermographic techniques for frescoes”, NDT & E Intern. 35, 559-565 (2002).
- 14. P. Bison, A. Bortolin, G. Cadelano, G. Ferrarini, F. López, and X. Maldague, “Comparison of image processing techniques for the on-site evaluation of damaged frescoes”, Proc. SPIE 9105, 91050E (2014).
- 15. S. LagUela, J. Martinez, J. Armesto, and P. Arias, “Energy efficiency studies through 3D laser scanning and thermographic technologies”, Energ. Buildings, 43, 1216-1221 (2011).
- 16. M.V. Wyawahare, P.M. Patil, and H.K. Abhyankar, “Image registration techniques: an overview”, Intern. J. Signal Process., Image Process. Pattern Recogn. 2, 11-28 (2009).
- 17. G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography”, J. Appl. Phys. 71, 3962-3965 (1992).
- 18. S. Torquato, Random Heterogeneous Materials – Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002.
- 19. F. Ochs, W. Heidcmann, and H. Miiller-Steinhagen, “Effective thermal conductivity of moistened insulation materials as a function of temperature”, Intern. J. Heat Mass Transfer 51, 539-552 (2008).
- 20. M.T. Klein, C. Ibarra-Castanedo, X.P. Maldague, and A. Bendada, “A straightforward graphical user interface for basic and advanced signal processing of thermographic infrared sequences”. Proc. SPIE 6939, 693914-1-9 (2008).
- 21. A. Bortolin, G. Cadelano, G. Fcrrarini, P. Bison, F. Peron, and X. Maldague, “High resolution survey of buildings by lock-in IR thermography”, Proc. SPIE8705 (2013).
- 22. Automation Creations, Inc., MatWeb, Your Source for Materials Information , http://www.matweb.com/, (2009).
- 23. Comsol Multiphysics, version 4.2, 2011. http://www. Comsol. com.
- 24. P. Bison, A. Bortolin, G. Cadelano, G. Ferrarini, K. Furlan, and E.Grinzato, “Geometrical correction and photogrammetric approach in thermographic inspection of buildings”, QIRT, Quantitative InfraRed Thermography, Naples, 11-14th June 2012.
- 25. R.P. Madding, “Emissivity measurement and temperature correction accuracy considerations”. Proc. SPIE 3700, 393 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-830e6997-61f1-42ba-8b20-9fe3bb5d96a2