PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reloading Modulus Estimation Based on Static and Dynamic Plate Load Tests Carried out on Unpaved Forest Roads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of comparative studies of strain modulus from static (PLT) and dynamic (LWD) plate testing. The tests were conducted on 9 sections of forest roads with different surfaces made of unbound aggregates. They produced 140-element sets of results, including values of reloading modulus (E2) and dynamic modulus of deformation determined using 10 and 15 kg drop weights (Evd10 and Evd15). An attempt was made to determine the relationship between the values of the moduli from tests with LWD loads (10 or 15 kg) and PLT, which would allow to determine the values of reloading modulus based on the dynamic modulus values. The analysis of the test results revealed that the values of the dynamic moduli are characterized by lower variability than those obtained from static testing and that from the engineering point of view there is no significant relationship between the sets of results of the subgrade deformability tests made with dynamic and static plates. The analysis of the results confirmed a simple relationship that allows for a qualitative assessment of subgrade deformability defined by the values of reloading modulus PLT tests based on the results of LWD tests with a 10 kg drop weight. The assessment error did not exceed 7% in this case. An analogous relationship was revealed for the results of LWD tests with a 15 kg drop weight. In this case, the assessment error did not exceed 6%. The results of the LWD tests can be used to provide a qualitative assessment of the deformability of subgrade, but the PLT tests are required for its quantitative assessment.
Twórcy
  • Institute of Civil Engineering, Faculty of Civil and Transport Engineering, Poznań University of Technology, ul. Piotrowo 5, 61-138 Poznań, Poland
  • Department of Forest Engineering, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625 Poznań, Poland
  • Institute of Civil Engineering, Faculty of Civil and Transport Engineering, Poznań University of Technology, ul. Piotrowo 5, 61-138 Poznań, Poland
Bibliografia
  • 1. Węgliński S. Irregularities related to the preparation of wood for export and its transport on public roads. In Natural and geotechnical aspects of construction, 1st ed.; Duda A., Flieger-Szymańska M., Eds; WPP, Poznań 2020, 201–222.
  • 2. Termansen M., Zandersen M., McClean C.J. Spatial substitution patterns in forest recreation. Reg. Sci. Urban Econ. 2008, 38: 81–97.
  • 3. Kaakkurivaara T., Vuorimies N., Kolisoja P., Uusitalo J. Applicability of portable tools in assessing the bearing capacity of forest roads. Silva Fennica 2015, 49(2): 1239, 1–26. https://doi.org/10.14214/sf.1239
  • 4. Heinimann H.R. Pavement engineering for forest roads: development and opportunities. croat. J. for. Eng. 2021, 42(1), 91–106. https://doi.org/10.5552/crojfe.2021.860
  • 5. Zednik P., Matula R., Pospisil K. Parameters for evaluating bearing capacity of subgrade and base forest road layers, Pol. J. Environ. Stud. 2015, 24(2), 809–815.
  • 6. Rozkrut D., Statistical Yearbook of Forestry 2023, 1st ed.; Statistics Poland: Białystok, Poland, 2023
  • 7. Grajewski S.M. Prediction of primary deformation modulus based on bearing capacity: a case on forest road with a light falling weight deflectometer Zorn ZFG 3000 GPS. Forests 2022, 13, 1874. https://doi.org/10.3390/f13111874
  • 8. Nazzal M., Abu-Farsakh M.Y., Alshibli K.A., Mohammad L. Evaluating the potential use of a portable LFWD for Characterization of pavement layers and subgrades, in geotechnical engineering for transportation projects, 1st ed., Yegian, M.K. and Kavazanjian, E. Eds.; ASCE, USA 2004, 1: 915–924.
  • 9. PN-S-02205:1998 Roads - earthwork - specifications and testing. The Polish Committee for Standardization, Warsaw 1998.
  • 10. Pawłowski M., Węgliński S. Rigid plates for load capacity tests of pavements ground and construction layers. In Natural and geotechnical aspects of construction, 1st ed.; Duda A., Flieger-Szymańska M., Eds. WPP, Poznań 2020, 183–200.
  • 11. Sybilski D., Eds. Catalog of reconstructions and renovations of flexible and semi-rigid pavements, RBRI, Warsaw 2013.
  • 12. BN-64/8931-02 Roads - Determination of the deformation modulus of flexible surfaces and subgrades by loading with a plate, Warsaw 1964.
  • 13. DIN 18134:2012-04 Baugrund – Versuche und Versuchsgeräte – Plattendruckversuch.
  • 14. BS 1377-9:1990 Methods of test for soils for civil engineering purposes. In-situ tests. 15. D1195/D1195M − 21 Standard Test Method for Repetitive Static Plate Tests of Soils and Flexible Pavement Components for Use in Evaluation and Design of Airport and Highway Pavements
  • 16. Loizos A., Boukovalas G. Pavement soil characterization using a dynamic stiffness model. International Journal of Pavement Engineering 2005, 6(1): 5–15. https://doi.org/10.1080/10298430500035638
  • 17. Węgliński S. Determination of load action ranges in static and dynamic tests of subgrades by applying rigid plates. Roads and Bridges 2018, 17: 73 – 88. http://dx.doi.org/10.7409/rabdim.018.005.
  • 18. Newcomb D.E., Birgisson B. Measuring in situ mechanical properties of pavement subgrade soils. NCHRP synthesis 278, Transportation Research Board, National Research Council, Washington, D.C., 1999.
  • 19. Stamp D.H., Mooney M.A. Influence of lightweight deflectometer characteristics on deflection measurement. Geotechnical Testing Journal 2013, 36(2): 216–226. V10.1520/GTJ20120034
  • 20. Lin D.F., Liau C.C. Lin J.D. Factors affecting portable falling weight deflectometer measurements. Journal of Geotechnical and Geoenvironmental Engineering 2006, 132 (6), 804-808. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(804)
  • 21. Duddu S.R., Chennarapu H. Quality control of compaction with lightweight deflectometer (LWD) device: a state-of-art. International Journal of Geo-Engineering 2022, 13(6), 1–13. https://doi.org/10.1186/s40703-021-00171-2
  • 22. Kim J.R., Kang H.B., Kim, D., Park, D.S., Kim, W.J. Evaluation of in situ modulus of compacted subgrades using portable falling weight deflectometer and plate-bearing load test. Journal of Materials in Civil Engineering 2007, 19(6). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(492)
  • 23. Pospisil K., Zednik P., Stryk J. Relationship between deformation moduli obtained usi ng light falling weight deflectometer and static plate test on various types of soil. The Baltic Journal of Road And Bridge Engineering 2014, 9(4), 251–259. https://doi.org/10.3846/bjrbe.2014.31
  • 24. Szpikowski M., Dreger M., Przygoda M., Dróżdż R., Dąbrowski M., Tokarczyk T., Har M., Mitrut M., Żuławnik P. Badanie i ustalenie zależności korelacyjnych dla oceny stanu zagęszczenia i nośności gruntów niespoistych płytą dynamiczną. RBRI, Warsaw 2005.
  • 25. Ebrahimi A., Edil T.B. Light-weight deflectometer for mechanistic quality control of base course materials. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 2013, 166(5): 441–450. https://doi.org/10.1680/geng.11.00011
  • 26. Mondal R., Rabbi F., Smith D., Mishra D. Compaction studies on open-graded aggregates using portable impulse plate load test devices. Construction and Building Materials 2022, 327: 126876. https://doi.org/10.1016/j.conbuildmat.2022.126876
  • 27. Li D., Zhang Z., Zhang G. Improved measurement method for roadbed bearing capacity based on PFWD dynamic modulus control. Sci. Rep. 2023, 13: 8853. https://doi.org/10.1038/s41598-023-35283-5
  • 28. Adam C., Adam D., Kopf F., Paulmichl I. Computational validation of static and dynamic plate load testing. Acta Geotechnica 2009, 4: 35–55. https://doi.org/10.1007/s11440-008-0081-0
  • 29. Milatz M., Grabe J., Zum Einfluss der Teilsättigung auf den Plattendruckversuch. Geotechnik 2015, 38(1), 28–35. https://doi.org/10.1002/gete.201400021
  • 30. Decký M., Drusa M., Papán D., Šrámek J., The Relationship between dynamic and static deformation modulus of unbound pavement materials used for their quality control methodology. Materials 2022, 15: 2922. https://doi.org/10.3390/ma15082922
  • 31. Langfelder L.J. and Nivargikar V.R. Some factors influencing shear strength and compressibility of compacted soils. Highway Research Board 1967, 177: 4–21.
  • 32. Lehmann S., Leppla S., Norkus A. Experimental study of the modulus of deformation determined by static and dynamic plate load tests. The Baltic Journal of Road And Bridge Engineering 2020, 15(4), 109–124. https://doi.org/10.7250/bjrbe.2020-15.497
  • 33. E2835 – 21 Standard Test Method for Measuring Deflections Using a Portable Impulse Plate Load Test Device
  • 34. Krawczyk B., Mackiewicz P. Impact of reinforcement layer material and thickness on deflections measured in the static and dynamic plate load tests. Roads Bridges 2016, 15: 87–102. http://dx.doi.org/10.7409/rabdim.016.006
  • 35. Krawczyk B., Mackiewicz P. Impact of repetitive loading on subgrade parameters derived from light weight deflectometer test. Roads and Bridges 2015, 14(1), 5–17. http://dx.doi.org/10.7409/rabdim.015.001
  • 36. Bodmer P., Byland H., de Witte H. Leichtes Fallgewichtsgerät für die Verdichtungskontrolle von Fundationsschichten, VSS 2014.
  • 37. TP BF-StB Technische Prüfvorschriften für Boden und Fels im Straßenbau. Teil B 8.3 Dynamischer Plattendruckversuch mit Leichtem Fallgewichtsgerät, Forschungsgesellschaft für Straßen - und Verkehrswesen e.V., Köln, 2012.
  • 38. BS 1924-2:2018 Hydraulically bound and stabilized materials for civil engineering purposes Sample preparation and testing of materials during and after treatment.
  • 39. E2583 − 07 (Reapproved 2015) Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD).
  • 40. UNI 11531-1 : 2014 Construction and maintenance for infrastructure civil building - Criteria for materials use - Part 1: Soils and mixtures of unbound aggregates.
  • 41. Mikolainis M., Ustinovičius M., Sližytė D., Zhilkina T., Analysis of static and dynamic deformation modulus. Engineering Structures and Technologies 2014, 8(2), 79–84. http://dx.doi.org/10.3846/2029882X.2016.1201434
  • 42. Nagy A.C., Ilieş N.M., Cîrcul A.P., Ciubotaru V.C., Crăciunescu B.M. Static and dynamic plate loading tests of stabilized soil samples used for riverbank consolidation. IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1138: 012032.
  • 43. RIL 836 (NGT39) Guideline for the use of the Light Weight Deflectometer in railway construction, Deutsche Bahn AG, 1997.
  • 44. ZTVE StB-94 Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau.
  • 45. ZTVT StB-95 Zusätzliche Technische VertragSbedingungen und Richtlinien für Tragschichten im Straßenbau.
  • 46. ZTVA StB-97 Zusaetzliche Technische Vertragsbedingungen und Richtlinien fuer Aufgrabungen in Verkehrsflaechen.
  • 47. Steinert B.C., Humphrey D.N., Kestler M.A. Portable Falling Weight Deflectometer Study, Department of Civil and Environmental Engineering University of Maine Orono, Maine 2005.
  • 48. Davies T. Assessing the suitability of the ‘Load-man’ single point falling weight deflectometer to tracking the change in strength in thin asphalt surfaced roads through spring thaw in Saskatchewan, UNB International Symposium on Thin Pavements, Surface Treatments, and Unbound Roads, Canada, New Brunswick 1997.
  • 49. Grajewski S.M., Evaluation of light falling weight deflectometer for in situ measurement of secondary deformation modulus of various forest road pavements. Croat. J. For. Eng. 2023, 44(2): 313–326. https://doi.org/10.5552/crojfe.2023.2125
  • 50. Fathi A., Tirado C., Mazari M., Rocha S., Nazarian S. Correlating Continuous Compaction Control Measurements to In Situ Modulus-Based Testing for Quality Assessment of Compacted Geomaterials. In: Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering. 1st ed.; Correia A., Tinoco J., Cortez P., Lamas L. Eds. Springer, Cham. 2020, 585–595. https://doi.org/10.1007/978-3-030-32029-4_50
  • 51. Sulewska M.J., Bartnik G. Application of the Light falling weight deflectometer (LFWD) to test aggregate layers on geosynthetic base. Procedia Engineering 2017, 189: 221–226. http://dx.doi.org/10.1016/j.proeng.2017.05.035
  • 52. Ramulu D.S., Vamsi K., Hariprasad C., Umashankar B. Evaluation of deformation modulus of unreinforced and reinforced sandy soil layers using LWD device. In Geosynthetics: Leading the Way to a Resilient Planet, 1st ed.; Biondi, G., Cazzuffi, D., Moraci, N., Soccodato, C. CRC Press, London, U.K., 1274–1281. https://doi.org/10.1201/9781003386889-162
  • 53. Vennapusa P.K.R., White D.J., Siekmeier J., Embacher R.A. In situ mechanistic characterisations of granular pavement foundation layers. International Journal of Pavement Engineering 2012, 13(1): 52–67. https://doi.org/10.1080/10298436.2011.564281
  • 54. Tang C., Lu Z., Liu G., Yao H., Cheng M., Zhuang B., Han Y. Study on mechanism and application of PFWD for subgrade quality detection: semianalytical approach and experiment. Road Materials and Pavement Design 2023, 7: 1–18. https://doi.org/10.1080/14680629.2023.2207660
  • 55. Bu B., Shang H., Liu S., Liu K. Rapid evaluation method of subgrade performance using portable falling weight deflectometer. Archives Of Civil Engineering 2023, 4: 619–633. http://dx.doi.org/10.24425/ace.2023.147680
  • 56. Wyroślak M. Establishing relationships between parameters of the controlled compaction soil by using various in-situ tests. IOP Conf. Series: Materials Science and Engineering, 2017, 245: 022041. https://doi.org/10.1088/1757-899X/245/2/022041
  • 57. Ayyanchira M.M. Introduction of light weight deflectometer. International Journal of Engineering Research & Technology 2014, 3(4): 303–305.
  • 58. Sudarsono I., Aisyah L., Prakoso, R.N.P. Correlation of modulus elasticity between Light Weight Deflectometer (LWD) and dynamic cone penetrometer (DCP) for subgrade of pavement. Journal of Physics: Conference Series 2020, 1517: 012030. https://doi.org/10.1088/1742-6596/1517/1/012030
  • 59. Zorn 2022. Technical data of the ZFG 3000 Light Weight Deflectometer. Available online: https://www.zorn-instruments.com/light_weight_deflectometers/zfg_3000 (accessed on 30.08.2022).
  • 60. Zorn 2014. User manual for the light weight deflectometer ZFG 3000 GPS in accordance with the German technical test requirements for soil and rocks in road construction TP BF – StB Part B 8.3. Merazet: Poznań, Poland 2014, 1–21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-830db51e-a0ad-4b52-baa6-330f94a699fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.