PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nano-CaCO3 jako matryca do przygotowania z chitozanu bogatych w azot mezoporowatych materiałów węglowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nano-CaCO3 as Template to Preparation from Chitosan of Nitrogen-rich Mesoporous Carbon Materials
Języki publikacji
PL
Abstrakty
PL
Pomimo długiej historii węgle aktywowane wciąż znajdują zastosowanie jako specyficzne adsorbenty i katalizatory. Specyficzność właściwości adsorpcyjnych i katalitycznych jest w dużej części uwarunkowana obecnością określonych pierwiastków na powierzchni węgla, głównie w formie tzw. heteroatomowych grup funkcyjnych. W ostatnim czasie, oprócz węgli aktywowanych zawierających tlenowe grupy funkcyjne, szczególnym zainteresowaniem cieszą się węgle o wysokiej zawartości azotu. Są one otrzymywane ze względu na szereg możliwych zastosowań, jak: adsorpcja gazów o charakterze kwasowym (m.in. CO2), adsorpcja jonów metali z roztworów czy wytwarzanie elektrod do superkondensatorów, ogniw paliwowych i innych urządzeń elektrochemicznych. Przedmiotem niniejszej pracy było wykorzystanie naturalnego biopolimeru do otrzymywania węgli aktywowanych. W badaniach zastosowano opracowaną przez autorów oryginalną metodę rozwijania parametrów powierzchniowych, wykorzystując CaCO3 jako matrycę nieorganiczną i chitozan jako prekursor matrycy węglowej. Głównym celem zastosowanej metody wytwarzania było uzyskanie materiałów o wysokiej zawartości azotu (powyżej 5% wagowo) i rozwiniętych parametrach strukturalnych. Wykazano wpływ sposobu użycia matrycy CaCO3 oraz temperatury prowadzonego procesu karbonizacji na rozwinięcie pola powierzchni uzyskanych materiałów. W celu sprawdzenia wpływu dodatku, tzw. N-reagenta, na parametry strukturalne otrzymanych materiałów węglowych w jednej z serii próbek zastosowano opcjonalny dodatek małocząsteczkowego nośnika azotu. Uzyskane pola powierzchni BET mieszczą się w zakresie do 1025 m2g−1, a zawartość azotu wynosi do 15,0% wag.
EN
Despite a long history active carbons still are used as special adsorbents and catalysts. The specificity of the adsorptive and catalytic properties is largely determined by the presence of certain elements in the surface of the carbon, mainly in the form of so-called heteroatomic functional groups. Recently, in addition to oxygen-containing activated carbon functional groups, nitrogen-rich active carbons have gained particular interest. They are fabricated due to a number of possible applications, such as adsorption of acidic gases (among others CO2), the adsorption of metal ions from solutions, or production of electrodes for supercapacitors, fuel cells and other electrochemical devices. The object of this study was to use a natural biopolymer for the preparation of activated carbons. The studies developed by the authors exploit an original method for the achievement of useful surface parameters based on the application of a template-CaCO3 and chitosan as a precursor of carbon matrix. The main purpose of the method of preparation was to obtain carbonaceous materials of a high nitrogen content (more than 5% by weight) and satisfactory structural parameters. It was proven that a proper CaCO3 usage and variation of carbonization temperature led to the development of the surface area and pore structure. In order to test the effect of the so- -called N-reagent on the structural parameters of active carbons, one of a series of samples was subjected to the action of a low molecular weight nitrogen carrier. The porous structure of activated carbons derived from chitosan can be tailored by the proper use of templates, i.e. strictly microporous activated carbons can be manufactured as well as a micro- -mesoporous carbons. The activated carbons obtained in a wide range of carbonization temperature (600÷800°C) even without the addition of N-reactant had a very high level of nitrogen (6.8÷9.6% by weight) bonded to the carbon matrix in various chemical form. BET surface area for the activated carbons obtained using N-reactant approached 1025 m2g−1, while the content of nitrogen reached 15.0% by weight. Basing on the results of XPS analysis several chemical types of nitrogen functional groups such as amine (I-row), pyrimidine and pyridine N-oxide were detected.
EN
Despite a long history active carbons still are used as special adsorbents and catalysts. The specificity of the adsorptive and catalytic properties is largely determined by the presence of certain elements in the surface of the carbon, mainly in the form of so-called heteroatomic functional groups. Recently, in addition to oxygen-containing activated carbon functional groups, nitrogen-rich active carbons have gained particular interest. They are fabricated due to a number of possible applications, such as adsorption of acidic gases (among others CO2), the adsorption of metal ions from solutions, or production of electrodes for supercapacitors, fuel cells and other electrochemical devices. The object of this study was to use a natural biopolymer for the preparation of activated carbons. The studies developed by the authors exploit an original method for the achievement of useful surface parameters based on the application of a template-CaCO3 and chitosan as a precursor of carbon matrix. The main purpose of the method of preparation was to obtain carbonaceous materials of a high nitrogen content (more than 5% by weight) and satisfactory structural parameters. It was proven that a proper CaCO3 usage and variation of carbonization temperature led to the development of the surface area and pore structure. In order to test the effect of the so- -called N-reagent on the structural parameters of active carbons, one of a series of samples was subjected to the action of a low molecular weight nitrogen carrier. The porous structure of activated carbons derived from chitosan can be tailored by the proper use of templates, i.e. strictly microporous activated carbons can be manufactured as well as a micro- -mesoporous carbons. The activated carbons obtained in a wide range of carbonization temperature (600÷800°C) even without the addition of N-reactant had a very high level of nitrogen (6.8÷9.6% by weight) bonded to the carbon matrix in various chemical form. BET surface area for the activated carbons obtained using N-reactant approached 1025 m2g−1, while the content of nitrogen reached 15.0% by weight. Basing on the results of XPS analysis several chemical types of nitrogen functional groups such as amine (I-row), pyrimidine and pyridine N-oxide were detected.
Rocznik
Strony
193--204
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii Materiałów, Adsorpcji i Katalizy, ul. Gagarina 7, 87-100 Toruń
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Katedra Chemii Materiałów, Adsorpcji i Katalizy, ul. Gagarina 7, 87-100 Toruń
Bibliografia
  • [1] Nowicki P., Pietrzak R., Węgle aktywne wzbogacone w azot - otrzymywanie, właściwości i potencjalne zastosowania, Adsorbenty i Katalizatory 2012, 7, 129-144.
  • [2] Garcia B.B., Candelaria S.L., Cao G., Nitrogenated porous carbon electrodes for supercapacitors, J. Mater. Sci. 2012, 47, 5996-6004.
  • [3] Kucińska A., Łukaszewicz J.P., Sposób wytwarzania nanoporowatych węgli aktywnych o wysokiej zawartości azotu (nr P396955, listopad 2011).
  • [4] Kucińska A., Cyganiuk A., Łukaszewicz J.P., A microporous and high surface area active carbon obtained by the heat - treatment of chitosan, Carbon 2012, 50, 3098-3101.
  • [5] Mao Y., Duan H., Xu B., Zhang L., Hu Y., Zhao C., Wang Z., Chen L., Yang Y., Lithium storage in nitrogen-rich mesoporous carbon materials, Energy & Environmental Science 2012, 5, 7, 7950-7955.
  • [6] Xu B., Shi L., Guo X., Peng L., Wang Z., Chen S., Cao G., Wu F., Yang Y., Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries, Electrochimica Acta 2011, 56, 6464-6468.
  • [7] Zhao C., Wang W., Yu Z., Zhang H., Wang A., Yang Y., Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities, J. Mater. Chem. 2010, 20, 976-980.
  • [8] Zou W.J., Mo S.S., Zhou S.L., Zhou T.X., Xia N.N., Yuan D.S., Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties, Journal of Electrochemical Science and Engineering 2011, 1, 1, 67-73.
  • [9] Xu B., Peng L., Wang G., Cao G., Wu F., Easy synthesis of mesoporous carbon using nano- CaCO3 as template, Carbon 2010, 48, 2377-2380.
  • [10] Chen J., Liu R., Shen Z., Song J., Chu G., High-gravity reactive precipitation process and morphology control for precipitated calcium carbonate, Chinese Journal of Process Engineering 2002, 2, 4, 309-313.
  • [11] Chen J-F., Wang Y-H., Guo F., Wang X-M., Zheng C., Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation, Industrial & Engineering Chemistry Research 2000, 39, 4, 948-954.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-830aa70b-3954-4639-9fe6-9af10f965397
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.