PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of full displacement pile installation on the stress and deformation state of surrounding soil: review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several field and model tests have been conducted to investigate the impact of pile installation on bearing capacity. However, little is known about how piles behave during installation, how they interact with the surrounding soil, and how this affects sandy soil properties. This review paper investigates the effect of pile driving on surrounding sandy soil as it compacts sandy soil near to the pile. For this purpose, various related literature was studied based on the observation of the pile installation effect on earth pressure or lateral stress, relative density, and pore water pressure in the sandy soil. A change in the deformation and stress state of surrounding sandy soil due to pile driving was presented. The installation of fully displacement piles can lead to significant stresses and deformations in the surrounding sandy soil. This is one of the main causes of uncertainty in the design and analysis of pile foundations. According to this study, the sandy soil around the pile is compacted during pile driving, resulting in lateral and upward displacement. This leads to the densification effect of pile driving on loose sandy soil. Sandy soil improvement with driven piles depends on pile shape, installation method, and pile driving sequences. This study concludes that in addition to its advantages of transferring superstructure load to deep strata, the increased relative density of loose sand, the change in the horizontal stress, and the influence of compaction on the sandy soil parameters during pile driving should be considered during pile design and analysis.
Rocznik
Strony
445--466
Opis fizyczny
Bibliogr. 69 poz., il., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • [1] A. Janalizadeh, A. Zahmatkesh, “Lateral response of pile foundations in liquefiable soils”, Journal of Rock Mechanics and Geotechnical Engineering, 2015, vol. 7, no. 5, pp. 532-539; DOI: 10.1016/j.jrmge.2015.05.001.
  • [2] A.F.H. Rooz, A. Hamidi, “A numerical model for continuous impact pile driving using ALE adaptive mesh method”, Soil Dynamics and Earthquake Engineering, 2019, vol. 118, pp. 134-143; DOI: 10.1016/j.soildyn.2018.12.014.
  • [3] S. Moriyasu, S. Kobayashi, T. Matsumoto, “Experimental study on friction fatigue of vibratory driven piles by in situ model tests”, Soils and Foundations, 2018, vol. 58, no. 4, pp. 853-865; DOI: 10.1016/j.sandf.2018.03.010.
  • [4] T.C. Siegel, W.M. NeSmith, P.E. Cargill, C. City, presented at the 32nd DFI Annual Conference, Colorado Springs, CO 2007, pp. 1-8.
  • [5] M.F. Randolph, J.P. Carter, C.P. Wroth, “Driven Piles in clay - The Effects of Installation and Subsequent Consolidation”, Geotechnique, 1979, vol. 29, no. 4, pp. 361-393; DOI: 10.1680/geot.1979.29.4.361.
  • [6] R.R. al-Omari, M.Y. Fattah, A.M. Kallawi, “Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches”, MATEC Web Conference, 2017, vol. 120, art. ID 06005, pp. 1-12; DOI: 10.1051/matecconf/201712006005.
  • [7] J.H. Lee, R. Salgado, “Determination of Pile Base Resistance in Sands”, Journal of Geotechnical and Geoenvironmental Engineering, 1999, vol. 125, no. 8, pp. 673-683; DOI: 10.1061/(ASCE)1090-0241(1999)125:8(673).
  • [8] Z.X. Yang, R.J. Jardine, B.T. Zhu, S. Rimoy, “Stresses Developed around Displacement Piles Penetration in Sand”, Journal of Geotechnical and Geoenvironmental Engineering, 2014, vol. 140, no. 3, art. ID 04013027; DOI: 10.1061/(ASCE)GT.1943-5606.0001022.
  • [9] S. Fan, B. Bienen, M.F. Randolph, “Effects of Monopile Installation on Subsequent Lateral Response in Sand. II: Lateral Loading”, Journal of Geotechnical Geoenvironmental Engineering, 2021, vol. 147, no. 5, art. ID 04021022; DOI: 10.1061/(ASCE)GT.1943-5606.0002504.
  • [10] S. Henke, J. Grabe, “Numerical investigation of soil plugging inside open-ended piles with respect to the installation method”, Acta Geotechnica, 2008, vol. 3, no. 3, pp. 215-223; DOI: 10.1007/s11440-008-0079-7.
  • [11] K. Żarkiewicz, W. Qatrameez, “Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors”, Sensors, 2021, vol. 21, no. 21, art. ID 7214; DOI: 10.3390/s21217214.
  • [12] B.M. Lehane, R.J. Jardine, A.J. Bond, R. Frank, “Mechanisms of Shaft Friction in Sand from Instrumented Pile Tests”, Journal of Geotechnical Engineering, 1993, vol. 119, no. 1, pp. 19-35; DOI: 10.1061/(ASCE)0733-9410(1993)119:1(19).
  • [13] F. Burali d’Arezzo, S. Haigh, M. Talesnick, Y. Ishihara, “Measuring horizontal stresses during jacked pile installation”, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2015, vol. 168, no. 4, pp. 306-318; DOI: 10.1680/geng.14.00069.
  • [14] R.J. Jardine, B.T. Zhu, P. Foray, Z.X. Yang, “Measurement of stresses around closed-ended displacement piles in sand”, Géotechnique, 2013, vol. 63, no. 1, pp. 1-17; DOI: 10.1680/geot.9.P.137.
  • [15] J.M.O. Hughes, P.K. Robertson, “Full-displacement pressuremeter testing in sand”, Canadian Geotechnical Journal, 1985, vol. 22, no. 3, pp. 298-307; DOI: 10.1139/t85-043.
  • [16] E.I. Robinsky, C.F. Morrison, “Sand Displacement and Compaction around Model Friction Piles”, Canadian Geotechnical Journal, 1964, vol. 1, no. 2, pp. 81-93; DOI: 10.1139/t64-002.
  • [17] R. Alsirawan, “Analysis of Embankment Supported by Rigid Inclusions Using Plaxis 3D”, Acta Technica Jaurinensis, 2021, vol. 14, no. 4, pp. 455-476; DOI: 10.14513/actatechjaur.00615.
  • [18] N. Linh, N. Nguyen, K. Nguyen, D. Nguyen, “Weighted dual approach to an equivalent stiffness-based load transfer model for jacked open-ended pile”, Journal of Applied and Computational Mechanics, 2021, vol. 7, no. 3; DOI: 10.22055/jacm.2021.37430.3013.
  • [19] A. Shelke, N.R. Patra, “Effect of Arching on Uplift Capacity of Single Piles”, Geotechnical and Geological Engineering, 2009, vol. 27, no. 3, pp. 365-377; DOI: 10.1007/s10706-008-9236-x.
  • [20] A.J. Bond, R.J. Jardine, “Effects of installing displacement piles in a high OCR clay”, Géotechnique, 1991, vol. 41, no. 3, pp. 341-363; DOI: 10.1680/geot.1991.41.3.341.
  • [21] B.M. Lehane, D.J. White, “Lateral stress changes and shaft friction for model displacement piles in sand”, Canadian Geotechnical Journal, 2005, vol. 42, no. 4, pp. 1039-1052; DOI: 10.1139/t05-023.
  • [22] A.B. Lundberg, J. Dijkstra, F. van Tol, “On the modelling of piles in sand in the small geotechnical centrifuge”, in Eurofuge 2012. Delft University of Technology and Deltares, 2012, p. 10.
  • [23] J. Otani, K. Pham, J. Sano, “Investigation of Failure Patterns in Sand Due to Laterally Loaded Pile Using X-Ray CT”, Soils and Foundations, 2006, vol. 46, no. 4, pp. 529-535; DOI: 10.3208/sandf.46.529.
  • [24] B. Yuan, R. Chen, J. Teng, et al., “Investigation on 3D ground deformation and response of active and passive piles in loose sand”, Environmental Earth Sciences, 2015, vol. 73, no. 11, pp. 7641-7649; DOI: 10.1007/s12665-014-3935-9.
  • [25] D. White, A. Take, M. Bolton, “Measuring soil deformation in geotechnical models using digital images and PIV analysis”, in 10th International Conference Computer Methods and Advances Geomechanics. CRC Press, 2001, pp. 997-1002.
  • [26] Z.H. Cao, G.Q. Kong, H.L. Liu, H. Zhou, “Model test on deformation characteristic of pile driving in sand using piv technique”, Gongcheng Lixue/Engineering Mechanics, 2014, vol. 31, no. 8, pp. 168-174; DOI: 10.6052/j.issn.1000-4750.2013.03.0217.
  • [27] A. Beijer-Lundberg, “Displacement pile installation effects in san”, Ph.D. thesis Delft University of Technology, 2015; DOI: 10.4233/UUID:01D8943F-E3EB-4051-8B44-32097E18C4DA.
  • [28] J. Dijkstra, W. Broere, O.M. Heeres, “Numerical simulation of pile installation”, Computers and Geotechnics, 2011, vol. 38, no. 5, pp. 612-622; DOI: 10.1016/j.compgeo.2011.04.004.
  • [29] A.A. Al-Karni, “Shear Strength Reduction Due to Excess Pore Water Pressure”, in Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2001, pp. 1-7.
  • [30] J. Dou, J. Chen, C. Liao, et al., “Study on the Correlation between Soil Consolidation and Pile Set-Up Considering Pile Installation Effect”, Journal of Marine Science and Engineering, 2021, vol. 9, no. 7, art. ID 705; DOI: 10.3390/jmse9070705.
  • [31] Y. Wang, X. Liu, M. Zhang, et al., “Field Test of Excess Pore Water Pressure at Pile-Soil Interface Caused by PHC Pipe Pile Penetration Based on Silicon Piezoresistive Sensor”, Sensors, 2020, vol. 20, no. 10, art. ID 2829; DOI: 10.3390/s20102829.
  • [32] K.Y. Lo, A.G. Stermac, “Induced pore pressures during pile-driving operations” in 6th International Conference on Soil Mechanics and Foundation Engineering (Montréal). 1965, pp. 1-6.
  • [33] A. Wada, “Excess pore water pressure and its impact”, Japanese Geotechnical Society Special Publication, 2016, vol. 2, no. 7, pp. 335-339; DOI: 10.3208/jgssp.SEA-16.
  • [34] J.-H. Hwang, N. Liang, C.-H. Chen, “Ground Response during Pile Driving”, Journal of Geotechnical and Geoenvironmental Engineering, 2001, vol. 127, no. 11, pp. 939-949; DOI: 10.1061/(asce)1090-0241(2001)127:11(939).
  • [35] M.Y. Fattah, F.S. Mustafa, “Development of Excess Pore Water Pressure around Piles Excited by Pure Vertical Vibration”, International Journal of Civil Engineering, 2017, vol. 15, no. 6, pp. 907-920; DOI: 10.1007/s40999-016-0073-7.
  • [36] K.D. Eigenbrod, T. Issigonis, “Pore-water pressures in soft to firmclay during driving of piles into underlying dense sand”, Canadian Geotechnical Journal, 1996, vol. 33, no. 2, pp. 209-218; DOI: 10.1139/t96-001.
  • [37] R.D. Holtz, P. Boman, “A New Technique for Reduction of Excess Pore Pressures During Pile Driving”, Canadian Geotechnical Journal, 1974, vol. 11, no. 3, pp. 423-430; DOI: 10.1139/t74-043.
  • [38] J.M. Pestana, C.E. Hunt, J.D. Bray, “Soil Deformation and Excess Pore Pressure Field around a Closed-Ended Pile”, Journal of Geotechnical and Geoenvironmental Engineering, 2002, vol. 128, no. 1, pp. 1-12; DOI: 10.1061/(ASCE)1090-0241(2002)128:1(1).
  • [39] M.S. Nataraja, B.E. Cook, “Increase in SPT N-values due to displacement piles”, Journal of Geotechnical Engineering, 1986, vol. 112, no. 10, pp. 969-971; DOI: 10.1061/(ASCE)0733-9410(1986)112:10(969).
  • [40] T.C. Siegel, W.M. NeSmith, W.M. NeSmith, P.E. Cargill, “Ground improvement resulting from installation of drilled displacement piles”, in Proceedings of the DFI’s 32nd Annual Conference Deep Foundations. Colorado Springs, USA, 2007, pp. 129-138.
  • [41] A.W. Stuedlein, T.N. Gianella, G. Canivan, “Densification of Granular Soils Using Conventional and Drained Timber Displacement Piles”, Journal of Geotechnical and Geoenvironmental Engineering, 2016, vol. 142, no. 12; DOI: 10.1061/(asce)gt.1943-5606.0001554.
  • [42] G.G. Meyerhof, “Compaction of Sands and Bearing Capacity of Piles”, Journal of the Soil Mechanics and Foundations Division, 1959, vol. 85, no. 6, pp. 1-29; DOI: 10.1061/jsfeaq.0000231.
  • [43] C. Szechy, “The Effects of Vibration and Driving Upon the Voids in Granular Soil Surrounding a Pile”, in Soil Mechanics and Foundation Engineering, vol. 2. 1961, pp. 61-164.
  • [44] H. Kishida, “Ultimate Bearing Capacity of Piles Driven into Loose Sand”, Soils and Foundations, 1967, vol. 7, no. 3, pp. 20-29; DOI: 10.3208/sandf1960.7.3_20.
  • [45] K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice. John Wiley & Sons, 1996.
  • [46] N. Barounis, J. Philpot, “Designing timber compaction piles to achieve a target soil density using CPTu data”, presented at NZGS Symposium 2021, New Zeland, pp. 1-8.
  • [47] A. Krasiński, “Advanced Field Investigations of Screw Piles and Columns”, Archives of Civil Engineering, 2011, vol. 57, no. 1, pp. 45-57; DOI: 10.2478/v.10169-011-0005-5.
  • [48] M.Y. Abu-Farsakh, Md. N. Haque, C. Tsai, “A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles”, Acta Geotechnica, 2017, vol. 12, no. 4, pp. 753-772; DOI: 10.1007/s11440-016-0498-9.
  • [49] L.C. Hung, T.D. Nguyen, J.-H. Lee, S.-R. Kim, “Applicability of CPT-based methods in predicting toe bearing capacities of driven piles in sand”, Acta Geotechnica, 2016, vol. 11, no. 2, pp. 359-372; DOI: 10.1007/s11440-015-0398-4.
  • [50] R. Munro, “International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)”, in Encyclopedia of Engineering Geology, P.T. Bobrowsky, B. Marker, Eds. Cham: Springer International Publishing, 2018, pp. 536-537; DOI: 10.1007/978-3-319-73568-9_174.
  • [51] H. Peiffer, W. Van Impe, G. Cortvrindt, M. Bottiau, “Evaluation of the influence of pile execution parameters on the soil condition around the pile shaft of a PSC-pile”, in Deep Foundations on Bored & Auger Piles: Bap II, vol. 1. AA Balkema, 1993, pp. 217-220.
  • [52] I. Van, H. Peiffer, “Evaluation of pile performance based on soil stress measurements - Field test program”, in Deep Foundations on Bored & Auger Piles : Bap II, vol. 1. AA Balkema, 1993, pp. 385-389.
  • [53] S. Amoroso, et al., “Comparative Study of CPTU and SDMT in Liquefaction-Prone Silty Sands with Ground Improvement”, Journal of Geotechnical and Geoenvironmental Engineering, 2022, vol. 148, no. 6, art. ID 04022038; DOI: 10.1061/(ASCE)GT.1943-5606.0002801.
  • [54] P. Monaco, D. Marchetti, “Evaluation of OCR in sand from DMT & CPT”, 2017, pp. 1-15.
  • [55] A.W. Stuedlein, T.N. Gianella, G. Canivan, “Densification of Granular Soils Using Conventional and Drained Timber Displacement Piles”, Journal of Geotechnical and Geoenvironmental Engineering, 2016, vol. 142, no. 12, art. ID 04016075; DOI: 10.1061/(asce)gt.1943-5606.0001554.
  • [56] S. Lobo-Guerrero, L.E. Vallejo, “Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses”, Granular Matter, 2007, vol. 9, no. 3-4, pp. 241-250; DOI: 10.1007/s10035-007-0037-3.
  • [57] Y. Lv, H. Liu, X. Ding, G. Kong, “Field Tests on Bearing Characteristics of X-Section Pile Composite Foundation”, Journal of Performance of Constructed Facilities, 2012, vol. 26, no. 2, pp. 180-189; DOI: 10.1061/(ASCE)CF.1943-5509.0000247.
  • [58] M. Ghazavi, “Experimental Analysis of Ground Vibration Due to Tapered Piles Driving”, presented at 7th International Conference on Seismology and Earthquake Engineering, Iran, 2015.
  • [59] M.K. Khan, M.H. El Naggar, M. Elkasabgy, “Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil”, Canadian Geotechnical Journal, 2008, vol. 45, no. 3, pp. 377-392; DOI: 10.1139/T07-107.
  • [60] W. Wu, G. Jiang, B. Dou, C.J. Leo, “Vertical Dynamic Impedance of Tapered Pile considering Compacting Effect”, Mathematical Problems in Engineering, 2013, vol. 2013, pp. 1-9; DOI: 10.1155/2013/304856.
  • [61] J. Liu, J. He, Y.-P. Wu, Q.-G. Yang, “Load transfer behaviour of a tapered rigid pile”, Géotechnique, 2012, vol. 62, no. 7, pp. 649-652; DOI: 10.1680/geot.11.T.001.
  • [62] M. Sakr, M.H. El Naggar, M. Nehdi, “Lateral behaviour of composite tapered piles in dense sand”, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2005, vol. 158, no. 3, pp. 145-157; DOI: 10.1680/geng.2005.158.3.145.
  • [63] R. Butterfield, P.K. Banerjee, “The Elastic Analysis of Compressible Piles and Pile Groups”, Géotechnique, 1971, vol. 21, no. 1, pp. 43-60; DOI: 10.1680/geot.1971.21.1.43.
  • [64] M. Sakr, M. Hesham El Naggar, “Centrifuge Modeling of Tapered Piles in Sand”, Geotechnical Testing Journal, 2003, vol. 26, no. 1; DOI: 10.1520/GTJ11106J.
  • [65] J. Wei, M.H. El Naggar, “Experimental study of axial behaviour of tapered piles”, Canadian Geotechnical Journal, 1998, vol. 35, no. 4, pp. 641-654; DOI: 10.1139/t98-033.
  • [66] S.D. Zil’berberg, A.D. Sherstnev, “Construction of compaction tapered pile foundations (from the experience of the “Vladspetsstroi” trust)”, Soil Mechanics and Foundation Engineering, 1990, vol. 27, no. 3, pp. 96-101; DOI: 10.1007/BF02306664.
  • [67] A.W. Stuedlein, T.N. Gianella, “Effects of Driving Sequence and Spacing on Displacement-Pile Capacity”, Journal of Geotechnical and Geoenvironmental Engineering, 2017, vol. 143, no. 3, art. ID 06016026; DOI: 10.1061/(ASCE)GT.1943-5606.0001618.
  • [68] F. Chow, “Field measurements of stress interactions between displacement piles in sand”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, vol. 33, no. 2; DOI: 10.1016/0148-9062(96)84051-4.
  • [69] A. Le Kouby, J.C. Dupla, J. Canou, R. Francis, “The effects of installation order on the response of a pile group in silica sand”, Soils Foundations, 2016, vol. 56, no. 2, pp. 174-188; DOI: 10.1016/j.sandf.2016.02.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8300d424-1d0a-4bca-8f16-f8d496b5f1ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.