PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Video summarization using color features and efficient adaptive threshold technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Tworzenie skrótu wideo z wykorzystaniem właściwości koloru oraz technik progu adaptacyjnego
Języki publikacji
EN
Abstrakty
EN
Most of the methods for video summarization relay on complicated clustering algorithms that makes them too computationaly complex for real time applications. In this paper we propose an efficient approach for video summary generation that does not relay on complex clustering algorithms and does not require frame length as a parameter. Our method combines MPEG-7 Color Layout Descriptors with adaptive threshold technique to detect shot boundaries. For each shot a keyframe is extracted and similar keyframes are eliminated in a simple manner. A MOS measure evaluation on a standard dataset show that the method produces video summaries of highest visual quality.
PL
W artykule zaproponowano nieskomplikowany algorytm do tworzenia skrótów materiałów wideo. Metoda łączy w sobie deskryptor warstwy koloru MPEG-7 z techniką progu adaptacyjnego, co pozwala na wykrywanie granic stopklatki. Dla wielu takich samych lub podobnych klatek, pozostawiana jest tylko jedna z nich.
Rocznik
Strony
247--250
Opis fizyczny
Bibliogr. 16 poz., il., schem., wykr.
Twórcy
autor
  • Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
  • Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
  • Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
Bibliografia
  • [1] Truong, B.T., Venkatesh, S., Video abstraction: A systematic review and classification. ACM Transactions on Multimedia Computing Communications and Applications, 3 (2007), No. 1, 1-37.
  • [2] Mundur, P., Rao, Y., Yesha, Y., Keyframe-based video summarization using Delaunay clustering. International Journal on Digital Libraries, 6 (2006), No. 2, 219–232.
  • [3] Hadi, Y., Essannouni, F., Thami, R. O. H., Video summarization by k-medoid clustering. Proceedings of the ACM symposium on Applied Computing - SAC ’06, (2006) New York, USA: ACM Press, 1400–1401.
  • [4] De Avila, S. E. F., Lopes, A. P. B., da Luz, A., Albuquerque Araújo, A., VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognition Letters, 32 (2011), No. 1, 56–68.
  • [5] Furini, M., Geraci, F., Montangero, M., Pellegrini, M., VISTO: visual storyboard for web video browsing. Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR) (2007), 635–642.
  • [6] Furini, M., Geraci, F., Montangero, M., Pellegrini, M., STIMO: STIll and MOving video storyboard for the web scenario. Multimedia Tools and Applications, 46 (2007), No. 1, 47–69.
  • [7] Lee, S., and Chang D.Y., Robust Video Fingerprinting for Content-Based Video Identification. IEEE Transactions on Circuits and Systems for Video Technology, 18 (2008), No. 7, 983-988.
  • [8] Świerz, M., Iwanowski, M., Image features based on morphological class distribution functions and its application to binary pattern recognition, Przegląd Elektrotechniczny, 88 (2012), No. 2, 1, 132-135.
  • [9] Eidenberger, H., Statistical analysis of content-based MPEG-7 descriptors for image retrieval. Multimedia Systems, 10 (2004), No. 2, 84–97.
  • [10] Deselaers, T., Keysers, D., Ney, H., Features for Image Retrieval: A Quantitative Comparison. DAGM Symposium Symposium for Pattern Recognition, (2004), 228–236.
  • [11] Manjunath, B. S., Ohm, J. R., Vinod, V. V., Yamada, A., Color and Texture descriptors, IEEE Trans. Circuits and Systems for Video Technology, 11 (2001), No. 6, 703–715.
  • [12] Manjunath, B. S., Salembier, P., Sikora, T., Introduction to MPEG-7. (2007), San Francisco CA: Wiley.
  • [13] Yusoff, Y., Christmas, W., Kittler, J., Video Shot Cut Detection Using Adaptive Thresholding, British Machine Vision Conference, (2000).
  • [14] Yeo, B. L., Liu. V., Rapid scene analysis on compressed video. IEEE Tranactions on Circuits and Systems for Video Technology, 5 (1995), No. 6, 533–544.
  • [15] The Open Video Project Online: http://www.openvideo.org
  • [16] Zhang, X-W., Zhu, T., Shu, X-C., Xiao, Q., Analysis and evaluation for the Scalability Mechanisms of H.264/SVC, Przegląd Elektrotechniczny, 87 (2011), No.7, 235-239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82fb6bcf-4075-42fd-ae3e-c935c8ee2036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.