PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

In-situ characterization of GaN material using Reflectance Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a measurement system for in-situ characterization of semiconductor structures fabricated by the Metalorganic Chemical Vapor Deposition (MOVPE) method using Reflectance Spectroscopy (RS). The construction of the developed measurement set-up is presented, along with a description of individual functional blocks. As part of the experiment, the parameters of the deposited gallium nitride (GaN) layer such as thickness (d), roughness (REMA), optical energy bandgap (Egopt) were monitored in-situ, and the complex refractive index (n + ik) of GaN was determined at temperatures above 1000˚C. The Effective Medium Approximation (EMA) method was employed to characterize the surface roughness of the layer during the growth process. Based on this data, the exact moment of full coalescence and subsequent growth in two dimensions was determined.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Janiszewskiego 11/17, 50-370 Wrocław, Poland
Bibliografia
  • [1] Meneghini, M., Santi, C., Abid, I., Buffolo, M., Cioni, M., Khadar, R.A., Nela, L., Zagni, N., Chini, A., Medjdoub, F., Meneghesso, G., Verzellesi, G., Zanoni, E., & Matioli, E. (2021). GaN-based power devices: Physics, reliability, and perspectives, Journal of Applied Physics, 130 (18), 181101. https://doi.org/10.1063/5.0061354
  • [2] Ahmadi, E., & Oshima, Y. (2019). Materials issues and devices of α- And β-Ga2O3. Journal of Applied Physics, 126(16), 160901. https://doi.org/10.1063/1.5123213
  • [3] Lee, D. H., Lee, Y., Cho, Y. H., Choi, H. Kim, S. H., & Park, M. H. (2023). Unveiled Ferroelectricity in Well-Known Non-Ferroelectric Materials and Their Semi-conductor Applications. Advanced Functional Materials, 33(42), 2303956. https://doi.org/10.1002/adfm.202303956
  • [4] Hoo Teo, K., Zhang, Y., Chowdhury, N., Rakheja, S., Ma, R., Xie, Q., Yagyu, E., Yamanaka, K., Li, K. & Palacios, T. (2021). Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. Journal of Applied Physics, 130(16), 160902. https://doi.org/10.1063/5.0061555
  • [5] Roccaforte, F., Fiorenza, P., Greco, G., Nigro, R. L., Giannazzo, F., Iucolano, F. & Saggio, M. (2018). Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectronic Engineering, 187-188, 66-77. https://doi.org/10.1016/j.mee.2017.11.021
  • [6] Stala, R., Folmer, S. & Mondzik, A. (2024). Resonant step-down DC-DC converter based on GaN power integrated circuits and SiC diodes, Bulletin of the Polish Academy of Sciences, 72(5), e151047. https://doi.org/10.24425/bpasts.2024.150116
  • [7] Li, D., Jiang, K., Sun, S. & Guo, C. (2018). AlGaN photonics: Recent advances in materials and ultraviolet devices. Advances in Optics and Photonics, 10(1), 43-110. https://doi.org/10.1364/AOP.10.000043
  • [8] Ćwirko, J., Ćwirko, R., Mikołajczyk, J. (2015). Comparative tests of temperature effects on the performance of GaN and SiC photodiodes. Metrology and Measurement Systems, 22(1), 119-126. https://doi.org/10.1515/mms-2015-0010
  • [9] Bumai, Y. A., Vaskou, A. S. & Kononenko, V. K. (2010). Measurement and analysis of thermal parameters and efficiency of laser heterostructures and light-emitting diodes. Metrology and Measurement Systems, 17(1), 39-46. https://doi.org/10.2478/v10178-010-0004-x
  • [10] Then, H. W. et al., GaN and Si Transistors on 300 mm Si (111) Enabled by 3D Monolithic Heterogeneous Integration. (2020). 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, 1-2. https://doi.org/10.1109/VLSITechnology18217.2020.9265093
  • [11] Breiland, W. G., & Killeen K. P. (1995). A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance. Journal of Applied Physics, 78(11), 6726-6736. https://doi.org/10.1063/1.360496
  • [12] Liu, C., & Watson, I. M. (2007). Quantitative simulation of in situ reflectance data from metal organic vapour phase epitaxy of GaN on sapphire. Semiconductor Science and Technology, 22(6), 629-635. https://doi.org/10.1088/0268-1242/22/6/008
  • [13] Pokryszka, P., Wośko, M., Kijaszek, W., & Paszkiewicz, R. (2021). High performance optical shutter design with scalable aperture. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(5), e138236. https://doi.org/10.24425/bpasts.2021.138236
  • [14] Johs, B., Herzinger, C. M., Dinan, J. H., Cornfeld, A., & Benson, J.D. (1998). Development of a parametric optical constant model for Hg1-xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth. Thin Solid Films, 313-314, 137-142. https://doi.org/10.1016/S0040-6090(97)00800-6
  • [15] Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A., & Paulson, W. (1998). Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. Journal of Applied Physics, 83(6), 3323-3336. https://doi.org/10.1063/1.367101
  • [16] Reshchikov, M. A. (2021). Measurement and analysis of photoluminescence in GaN. Journal of Applied Physics, 129(12). https://doi.org/10.1063/5.0041608
  • [17] Wośko, M. (2019). Optimisation of LT-GaN nucleation layer growth conditions for the improvement of electrical and optical parameters of GaN layers. Optica Applicata, 49(1), 167-176. https://doi.org/10.5277/oa190115
  • [18] Motamedi, P., Dalili, N., & Cadien, K. (2015). A route to low temperature growth of single crystal GaN on sapphire. Journal of Materials Chemistry C, 3(28), 7428-7436. https://doi.org/10.1039/c5tc01556a
  • [19] Muth J. F. et al. (1997). Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Applied Physics Letters, 71(18), 2572-2574. https://doi.org/10.1063/1.120191
  • [20] Aspnes, D. E., Theeten, B. E., & Hottier, F. (1979). Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Physical Review B, 20(8). https://doi.org/10.1103/PhysRevB.20.3292
Uwagi
The research was co-financed by the National Science Centre under the projects MINIATURA 2024/08/X/ST7/00040 and OPUS 2022/45/B/ST5/04292, the National Agency for Academic Exchange under the contract BPN/BSK/2023/1/00040/U/00001 and Wrocław University of Science and Technology subsidy. Maintenance of the research infrastructure was financed under the Ministry of Education and Science project No. 36/564935/SPUB/SP/2023. The research was accomplished thanks to the product indicators and result indicators achieved within the framework of projects co-financed by the National Centre for Research and Development under TECHMATSTRATEG project No. 1/346922/4/NCBR/2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82fafb89-2996-4be5-8d87-e18e6a05b40f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.