PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental impact of two ways of treating domestic wastewater with an example of a conventional treatment plant versus plant-pond sewage treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oddziaływanie środowiskowe dwóch sposobów oczyszczania ścieków bytowych na przykładzie oczyszczalni konwencjonalnej i roślinno-stawowej
Języki publikacji
EN
Abstrakty
EN
One of the important metter of environmental care is effective sewage treatment. Centralised sewage treatment with high efficiency dominates in Poland. However, highly dispersed properties often require the use of other alternative solutions. The aim of the paper is to compare the impact of two sewage treatment methods on the environment: conventional (PWWTP) and plant-pond (PPST). To assess the operation of both treatment plants and their environmental impact, emergy calculation and emergy indicators such as ELR, EYR, and ESI were used. It was found that the PPST treatment plant burdens the environment less. The current operation of the conventional treatment plant absorbs over 87% of the total emergy, while in the case of the biological treatment plant it is 0.40%. ELR for PPST was 5.58, while for PWWTP it was as much as 1809.09. The efficiency of sewage treatment in both treatment plants is similar. BOD5 reduction was 87.5% for PPST and 96.7% for PWWTP. For both treatment plants, an attempt was made to identify other environmental benefits, such as the generation and use of by-products, the possibility of using treated sewage for irrigation purposes or creating a biodiversity site. An attempt was made to quantify some of the additional benefits.
PL
Jednym z istotnych elementów dbałości o środowisko jest skuteczne oczyszczanie ścieków. W Polsce dominuje scentralizowane oczyszczanie ścieków o dużej skuteczności. Jednak nieruchomości o dużym rozproszeniu często wymagają zastosowania innych alternatywnych rozwiązań. Celem pracy jest porównanie oddziałyływania na środowisko dwóch sposobów oczyszczania ścieków; konwencjonalnego (PWWTP) oraz stawowo-roślinnego (PPST). W ocenie działania obu oczyszczalni i ich środowiskowego oddziaływania wykorzystano rachunek emergetyczny oraz wskaźniki emergetyczne takie jak ELR, EYR, ESI. Stwierdzono, że oczyszczalnia PPST mniej obciąża środowisko. Bieżące funkcjonowanie oczyszczalni konwencjonalnej pochłania aż ponad 87% całości emergii, podczas gdy w przypadku oczyszczalni biologicznej jest to 0.40% całości emergii. ELR dla PPST wyniósł 5.58 podczas gdy dla PWWTP 1809.09. Skuteczność oczyszczania ścieków w obu oczyszczalniach jest zbliżona. Redukcja BZT5 wyniosła dla PPST 87.5%, a dla PWWTP 96.7%. Dla obu oczyszczalni dokonano próby identyfikacji innych, środowiskowych korzyści, jak np. wytwarzanie i wykorzystanie produktów ubocznych, możliwość wykorzystania oczyszczonych ścieków dla potrzeb nawadniania czy tworzenie miejsca różnorodności biologicznej. Podjęto próbę ilościowego oszacowania niektórych dodatkowych korzyści.
Rocznik
Tom
Strony
art. no. 1187
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
  • Opole University of Technology, Poland, Prószkowska Street 76, 45-758 Opole, Poland
  • Opole University of Technology, Poland
  • Opole University of Technology, Poland
Bibliografia
  • Agaton, C. B., & Guila, P. M. C. (2023). Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment. Earth, 4(1), 78-92. https://doi.org/10.3390/earth4010006
  • Alabaster, G., Johnston, R., Thevenon, F., & Shantz, A. (2021). Progress on Wastewater Treatment. Global status and acceleration needs for SDG indicator 6.3.1. https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf
  • Alizadeh, S., Zafari-Koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327
  • Bakshi, B. R. A. (2000). Thermodynamic framework for ecologically conscious process systems engineering. Computers & Chemical Engineering, 24(2-7), 1767-1773. https://doi.org/10.1016/S0098-1354(00)00462-2
  • Birol, E., Karousakis, K., & Koundouri, P. (2006). Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145-156. https://doi.org/10.1016/j.ecolecon.2006.06.002
  • Björklund, J., Geber, U., & Rydberg, T. (2001). Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resources, Conservation and Recycling, 31(4), 293-316. https://doi.org/10.1016/S0921-3449(00)00091-4
  • Brown, M. T., Campbell, D. E., De Vilbiss, Ch., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92-95. https://doi.org/10.1016/j.ecolmodel.2016.03.018
  • Campos, J. L., Valenzuela-Heredia, D., Pedrouso, A., Val del Río, A., Belmonte, M., & Mosquera-Corral, A. (2016). Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 3796352. https://doi.org/10.1155/2016/3796352
  • Cao, K., & Feng, X. (2007). The Emergy Analysis of Multi-Product Systems. Process Safety and Environmental Protection, 85(5), 494-500. https://doi.org/10.1205/psep07007
  • Chen, Z. M., Chen, G. Q, Chen, B., Zhou, J. B., Yang, Z. F., & Zhou, Y. (2009). Net ecosystem services value of wetland: Environmental economic account. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2837-2843. https://doi.org/10.1016/j.cnsns.2008.01.021
  • Ciobanu, R., Teodosiu, C., Almeida, C. M. V. B., Agostinho, F., & Giannetti, B. F. (2022). Sustainability Analysis of a Municipal Wastewater Treatment Plant through Emergy Evaluation. Sustainability, 14(11), 6461. https://doi.org/10.3390/su14116461
  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van der Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. https://doi.org/10.1038/387253a0
  • Dong, X., Ulgiati, S., Yan, M., Zhang, X., & Gao, W. (2008). Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China. Energy Policy, 36(10), 3882-3892. https://doi.org/10.1016/j.enpol.2008.04.027
  • Doroszewski, A., Jadczyszyn, J., Kozyra, J., Pudełko, R., Stuczyński, T., Mizak, K., Łopatka, A., Koza, P., Górski, T., & Wróblewska, E. (2012). Podstawy systemu monitoringu suszy rolniczej. Woda-Środowisko-Obszary Wiejskie, 12(2(38)), 77-91. https://www.itp.edu.pl/old/wydawnictwo/woda/zeszyt_38_2012/artykuly/Doroszewski%20i%20in.pdf (in Polish).
  • García-Herrero, L., Lavrnić, S., Guerrieri, V., Toscano, A., Milani, M., Cirelli, G. L., & Vittuari, M. (2022). Cost-benefit of green infrastructures for water management: A sustainability assessment of full-scale constructed wetlands in Northern and Southern Italy. Ecological Engineering, 185, 106797. https://doi.org/10.1016/j.ecoleng.2022.106797
  • Geber, U., & Björklund, J. (2002). The relationship between ecosystem services and purchased input in Swedish wastewater treatment systems - a case study. Ecological Engineering, 19(1), 97-117. https://doi.org/10.1016/S0925-8574(02)00079-4
  • Gersberg, R. M., Elkins, B. V., Lyon, S. R., & Goldman, C. R. (1986). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research, 20(3), 363-368. https://doi.org/10.1016/0043-1354(86)90085-0
  • Grzebisz, W. (2008). Nawożenie roślin uprawnych, t. 1 i 2. Podstawy nawożenia. Nawozy i systemy nawożenia. Poznań: PWRiL. (in Polish).
  • Hau, J. L., & Baksh, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215-225. https://doi.org/10.1016/j.ecolmodel.2003.12.016
  • Herath, I., & Vithanage, M. (2015). Phytoremediation in Constructed Wetlands. In A. Ansari, S. Gill, R. Gill, G. Lanza & L. Newman (Eds.), Phytoremediation (pp. 243-263). Cham: Springer. https://doi.org/10.1007/978-3-319-10969-5_21
  • Ho, L., & Goethals, P. M. L. (2020). Municipal wastewater treatment with pond technology: Historical review and future outlook. Ecological Engineering, 148, 105791. https://doi.org/10.1016/j.ecoleng.2020.105791
  • Jawecki, B., Marszałek, J., Pawęska, K., Sobota, M., & Malczewska, B. (2016). Construction and operation of domestic wastewater treatment plant under the relevant legislation – Part 1. Infrastructure and Ecology of Rural Areas, 2, 501-516. http://dx.medra.org/10.14597/infraeco.2016.2.2.035 (in Polish).
  • Kirkland, W. T. (1988). Preserving the Whangamarino Wetland: An Application of the Contingent Valuation Method [A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master]. Massey University. https://mro.massey.ac.nz/bitstream/handle/10179/5831/02_whole.pdf
  • Kuś, J. (2015). Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i raporty IUNG-PIB, 45(19), 9-26. https://iung.pl/wp-content/uploads/2009/10/zesz45.pdf (in Polish).
  • Liu, L., Zhang, X., & Lyu, Y. (2022). Performance comparison of sewage treatment plants before and after their upgradation using emergy evaluation combined with economic analysis: A case from Southwest China. Ecological Modelling, 472, 110077. https://doi.org/10.1016/j.ecolmodel.2022.110077
  • Mander, Ü., Tournebize, J., Kasak, K., & Mitsch, W. J. (2014). Climate regulation by free water surface constructed wetlands for wastewater treatment and created riverine wetlands. Ecological Engineering, 72, 103-115. https://doi.org/10.1016/j.ecoleng.2013.05.004
  • Meier, L., P´erez, R., Az´ocar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102-109. https://doi.org/10.1016/j.biombioe.2014.10.032
  • Merlin, G., & Lissolo, T. (2010). Energy and Emergy Analysis to Evaluate Sustainability of Small Wastewater Treatment Plants: Application to a Constructed Wetland and a Sequencing Batch Reactor. Journal of Water Resource and Protection, 2, 997-1009. http://dx.doi.org/10.4236/jwarp.2010.212120
  • Ministry of Infrastructure. (2021). National Program for Municipal Wastewater Treatment (KPOŚK). https://www.gov.pl/web/infrastruktura (in Polish).
  • NEAD. (2024). National Environmental Accounting Database V2.0. http://www.emergy-nead.com/home
  • Odum, H. (1996). Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons.
  • Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. (Dz. U. z 2019 r., poz. 1311). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (in Polish).
  • Saladini, F., Patrizi, N., Pulselli, F. M., Marchettini, N., & Bastianoni, S. (2016). Guidelines for emergy evaluation of first, second and third generation biofuels. Renewable and Sustainable Energy Reviews, 66, 221-227. https://doi.org/10.1016/j.rser.2016.07.073
  • Serdarevic, A., & Dzubur, A. (2019). Importance and Practice of Operation and Maintenance of Wastewater Treatment Plants. In S. Avdaković (Ed.), Advanced Technologies, Systems, and Applications III (pp. 121-127). Cham: Springer. https://doi.org/10.1007/978-3-030-02577-9_14
  • Shingare, R. P., Thawale, P. R., Raghunathan, K., Mishra, A., & Kumar, S. (2019). Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. Journal of Environmental Management, 246, 444-461. https://doi.org/10.1016/j.jenvman.2019.05.157
  • Siracusa, G., & La Rosa, A. D. (2006). Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the emergy analysis. Ecological Modelling, 197(3–4), 490-497. https://doi.org/10.1016/j.ecolmodel.2006.03.019
  • Skłodowski, P., & Bielska, A. (2009). Properties and fertility of soils in Poland - a basis for the formation of agro-environmental relations. Woda-Środowisko-Obszary Wiejskie, 9(4), 203-214. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATC-0002-0057 (in Polish).
  • Statistics Poland. (2024, November 30). Housing Economy and Municipal Structure in 2023. https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5492/13/18/1/gospodarka_mieszkaniowa_i_infrastruktura_komunalna_w_2023_r..pdf (in Polish).
  • Uchwała NR XXIX/214/2020 Rady Miejskiej w Prószkowie z dnia 18 grudnia 2020 r. w sprawie wyznaczenia obszaru i granic aglomeracji Prószków. (Dz. U. Woj. Opolskiego poz. 3658). https://duwo.opole.uw.gov.pl/WDU_O/2020/3658/akt.pdf (in Polish).
  • United States Environmentral Protection Agency. (2025). Small and Rural Wastewater Systems. https://www.epa.gov/small-and-rural-wastewater-systems/about-small-wastewater-systems
  • Vassallo, P., Paoli, Ch., & Fabiano, M. (2009). Emergy required for the complete treatment of municipal wastewater. Ecological Engineering, 35(5), 687-694. https://doi.org/10.1016/j.ecoleng.2008.11.002
  • Verlicchi, P., Al Aukidy, M., Galletti, A., Zambello, E., Zanni, G., & Masotti, L. (2012). A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. Journal of Hydrology, 432-433, 127-136. https://doi.org/10.1016/j.jhydrol.2012.02.024
  • Wathugala, A. G., Suzuki, T., & Kurihara, Y. (1987). Removal of nitrogen, phosphorus and COD from waste water using sand filtration system with Phragmites Australis. Water Research, 21(10), 1217-1224. https://doi.org/10.1016/0043-1354(87)90173-4
  • Wiśniewska-Kadżajan, B. (2013). Household sewage – treatment plants as a way to solve the problems of wastewater management in rural areas. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, Seria: Administracja i Zarządzanie, 25(98), 247-257. https://czasopisma.uws.edu.pl/znadministracja/article/view/2210 (in Polish).
  • Wu, S., Austin, D., Liu, L., & Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6), 948-954. https://doi.org/10.1016/j.ecoleng.2011.02.002
  • Zawadzka, J., Gallagher, E., Smith, H., & Corstanje, R. (2019). Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement. Ecological Engineering, 142, 100006. https://doi.org/10.1016/j.ecoena.2019.100006
  • Zgłoszenie budowlane. (2004). Roślinno-stawowa oczyszczalnia ścieków dla budynku mieszkalnego w m. Szczedrzyk. Jednostka Projektowa: Instytut Ekologii Stosowanej. Maszewo (dokument prywatny właścicieli obiektu). (construction notification).
  • Zhang, J., & Ma, L. (2020). Environmental Sustainability Assessment of a New Sewage Treatment Plant in China Based on Infrastructure Construction and Operation Phases Emergy Analysis. Water, 12(2), 484. https://doi.org/10.3390/w12020484
  • Zhang, L. X., Ulgiati, S., Yang, Z. F., & Chen, B. (2011). Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. Journal of Environmental Management, 92(3), 683-694. https://doi.org/10.1016/j.jenvman.2010.10.005
  • Zhang, X., Deng, S., Wu, J., & Jiang, W. (2010). A sustainability analysis of a municipal sewage treatment ecosystem based on emergy. Ecological Engineering, 36(5), 685-696. https://doi.org/10.1016/j.ecoleng.2009.12.010
  • Zhao, Y., Ji, B., Liu, R., Ren, B., & Wei, T. (2020). Constructed treatment wetland: Glance of development and future perspectives. Water Cycle, 1, 104-112. https://doi.org/10.1016/j.watcyc.2020.07.002
  • Zhou, J. B., Jiang, M. M., Chen, B., & Chen, G. Q. (2009). Emergy evaluations for constructed wetland and conventional wastewater treatments. Communications in Nonlinear Science and Numerical Simulation, 14(4), 1781-1789. https://doi.org/10.1016/j.cnsns.2007.08.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82f8b64b-655f-48d5-a857-d10b0a83b5ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.