Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Repository of 3D images for education and everyday clinical practice purposes

Warianty tytułu
Języki publikacji
Novel, easy-automation technologies such as three-dimensional (3D) printing and reverse engineering can improve the training of medical and allied health professionals and everyday clinical practice. This paper aims at the presentation of its own concept of the repository of medical images for education and everyday clinical practice purposes. Presented concept of the repository constitutes a relatively novel solution, but its further development may lead to the novel family of commercial initiatives aiming at joining common efforts toward optimization of 3D-based technologies in everyday clinical practice and online e-learning system.
Opis fizyczny
Bibliogr. 22 poz., rys., zdj.
  • Uniwersytet Kazimierza Wielkiego, Institute of Mechanics and Applied Computer Sciences, Bydgoszcz, Poland
  • Uniwersytet Kazimierza Wielkiego, Institute of Mechanics and Applied Computer Sciences, Bydgoszcz, Poland
  • Department of Physiotherapy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
  • Uniwersytet Kazimierza Wielkiego, Institute of Mechanics and Applied Computer Sciences, Bydgoszcz, Poland
  • Uniwersytet Kazimierza Wielkiego, Institute of Mechanics and Applied Computer Sciences, Bydgoszcz, Poland
  • Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Neurocognitive Laboratory, Toruń, Poland
  • 1. O’Reilly MK, Reese S, Herlihy T, Geoghegan T, Cantwell CP, Feeney RN, et al. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat Sci Educ 2016;9:71–9.
  • 2. Kennedy DN, Haselgrove C, Riehl J, Preuss N, Buccigrossi R. The NITRC image repository. Neuroimage 2016;124:1069–73.
  • 3. Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The Neuro Bureau ADHD-200 preprocessed repository. Neuroimage 2016. DOI: 10.1016/j.neuroimage.2016.06.034.
  • 4. Matthews PM, Hampshire A. Clinical concepts emerging from fMRI functional Connectomics. Neuron 2016;91:511–28.
  • 5. Mevel K, Fransson P. The functional brain connectome of the child and autism spectrum disorders. Acta Paediatr 2016;105:1024–35.
  • 6. Patel SR, Ghose K, Eskandar EN. An open source 3-D printed modular micro-drive system for acute neurophysiology. PLoS One 2014;9:e94262.
  • 7. Weinberg SM, Raffensperger ZD, Kesterke MJ, Heike CL, Cunningham ML, Hecht JT, et al. The 3D facial norms database: part 1. A web-based craniofacial anthropometric and image repository for the clinical and research community. Cleft Palate Craniofac J 2016;53:e185–97.
  • 8. Keane PA, Grossi CM, Foster PJ, Yang Q, Reisman CA, Chan K, et al. Optical coherence tomography in the UK biobank study – rapid automated analysis of retinal thickness for large population-based studies. PLoS One 2016;11:e0164095.
  • 9. Copes LE, Lucas LM, Thostenson JO, Hoekstra HE, Boyer DM. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data. Sci Data 2016;3:160001.
  • 10. Radenkovic D, Solouk A, Seifalian A. Personalized development of human organs using 3D printing technology. Med Hypotheses 2016;87:30–3.
  • 11. Visser J, Melchels FP, Dhert WJ, Malda J. Tissue printing; the potential application of 3D printing in medicine. Ned Tijdschr Geneeskd 2013;157:A7043.
  • 12. Shui W, Zhou M, Chen S, Pan Z, Deng Q, Yao Y, et al. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. Int J Comput Assist Radiol Surg 2016. [Epub ahead of print].
  • 13. Naftulin JS, Kimchi EY, Cash SS. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One 2015;10:e0136198.
  • 14. Gür Y. Additive manufacturing of anatomical models from computed tomography scan data. Mol Cell Biomech 2014;11:249–58.
  • 15. He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep 2014;4:6973.
  • 16. Choonara YE, du Toit LC, Kumar P, Kondiah PP, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res 2016;16:23–32.
  • 17. Gu Q, Hao J, Lu Y, Wang L, Wallace GG, Zhou Q. Three-dimensional bio-printing. Sci China Life Sci 2015;58:411–9.
  • 18. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 2014;98:159–61.
  • 19. Mikołajewska E, Macko M, Mikołajewski D, Ziarnecki Ł, Stańczak S, Kawalec P. Medical and military applications of 3D printing. Journal of Science of the gen. Tadeusz Kosciuszko Military Academy of Land Forces 2016;179:128–41.
  • 20. Macko M, Mikołajewska E, Szczepański Z, Augustyńska B, Mikołajewski D. Repository of images for reverse engineering and medical simulation purposes. Med Biol Sci 2016;30:23–9.
  • 21. Macko M, Szczepański Z, Mikołajewski D, Mikołajewska E, Nowak J, Listopadzki S. The method of artificial organs fabrication based on reverse engineering in medicine. Proceedings of the III International Scientific Conference: Morpho-Biomechanical and Psycho-Physical Aspects of Youth Lifestyle in V4 Countries, Napierała PM et al., eds. Bydgoszcz: Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, 2016, p. 45.
  • 22. Mikołajewska E, Macko M, Ziarnecki Ł, Stańczak S, Kawalec P, Mikołajewski D. 3D printing technologies in rehabilitation engineering. J Health Sci 2014;4:78–83.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.