PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mesolithic occupations and environments on the Island of Ikaria, Aegean, Greece

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most important Mesolithic site on the Island of Ikaria, Kerame 1, extends 80 m along the sloping edge of the cliff and is up to 40 m wide. The site is a sum of repeated sojourns of Mesolithic groups that had left behind concentrations of lithic artefacts, which were subsequently displaced by post-depositional agents, first of all by erosion. As a result, the site reveals now a large concentration of finds in Trenches E, C, and G. Moreover, post-depositional agents caused the destruction of permanent features such as the hearths associated with the various khsemenitsas, or — possibly — stone rings surrounding the dwelling structures. Only in trenches D, B and E the remains of a circular stone rings, probably around hearths, were registered. The lithic industry of Kerame 1 displays considerable similarity to the site of Maroulas on Kythnos; the techno-morphological differences are, probably, the effect of differing raw materials structure at Kerame 1 and at Maroulas. At Kerame 1, the distant interregional contacts and the influx of extralocal raw materials (documented by the flow of obsidian nodules from Melos and Yali) caused that production in a full cycle was carried out on-site. Thus, there was no specialization of lithic production, and unworked nodules of raw material were exploited in the particular social clusters in a full cycle, whose outcome were tools to be used by a given unit. Regretfully, because organic materials (also bones) have not been preserved we have no data to determine seasonality at Kerame l. Nevertheless, we can say with all certainty that Mesolithic groups visiting Kerame 1 were mobile, which is evidenced by the network of interregional contacts. The most noticeable similarity between Kerame 1 and Maroulas can be accounted for by the chronological closeness of the two sites. The AMS determinations from Maroulas concentrate in the first half of the 9th millenium cal. BC (Facorellis et a1. 2010). Similarly, the dates from obsidian dehydration from Kerame 1 (if their broad standard deviation is overlooked) correspond to the first half of the 9th millenium cal. BC.
Czasopismo
Rocznik
Tom
Strony
1--87
Opis fizyczny
Bibliogr. 44 poz.rys., tab., tabl., wykr.
Twórcy
autor
  • University of the Aegean, Department of Mediterraean Studies, Rhodes, Greece
  • Archaeological Museum in Kraków, Senacka 3, 31-002 Kraków, Poland
  • Institute of Archaeology, Jagiellonian University, Gołębia 11, 31-007 Kraków
  • Group of Ancient Metal and Palaeoenvironrnental Studies, Laboratory of Archaeometry, Institute of Materials Science NCSR "Demokritos", 15310 Agios Paraskevi, Greece
autor
  • Group of Ancient Metal and Palaeoenvironrnental Studies, Laboratory of Archaeometry, Institute of Materials Science NCSR "Demokritos", 15310 Agios Paraskevi, Greece
autor
  • Laboratory of Archaeometry, University of the Aegean, Department of Mediterranean Studies, Rhodos, Greece
autor
autor
  • Department of Geomorphology, Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 30, 20-927 Warszawa, Poland
Bibliografia
  • 1. ADAMIEC G. and AITKEN M.J., 1998. Dose-rate conversion factors: update. Ancient TL 16: 37-50.
  • 2. AMBROSE W. R., 1998. Obsidian Hydration Dating at a Recent Age Obsidian Mining Site in Papua, New Guinea. In: M. S. SHACKLEY (Ed.), Archaeological Obsidian Studies: Method and Theory. Plenum Press, New York: 205-222.
  • 3. BROODBANK C., 2006. The origins and early development of Mediterranean maritime activity. Journal of Mediterranean Archaeology 19: 199-230.
  • 4. CRANK J., 1975. The Mathematics of Diffusion. Oxford University Press, Oxford.
  • 5. FACORELLIS Y., DAMIATA B.N., VARDALA-THEODORU E., NTINOU M. AND SOUTHON J., 2010. AMS radiocarbon dating of the Mesolithic site Maroulas on Kythnos and calculation of the regional marine reservoir effect. In: The Prehistory of the Island of Kythnos (Cyclades, Greece) and the Mesolithic settlement at Maroulas. PAU, Kraków: 127-136.
  • 6. FRIEDMAN I. and SMITH R., 1960. A new dating method using obsidian. Part I: the development of the method. American Antiquity 25: 476-522.
  • 7. GEOLOGICAL MAP OF GREECE 1: 50,000, Ikaria lsland sheet, 2005. IGME, Athens.
  • 8. GEORGALAS G.C., 1953. Les terrasses littorales de la cote sud-orientale de 1'ile de Nikaria (Mer Egee). Proceedings of the Academy of Athens 28: 425-434.
  • 9. GEORGIADIS M., 2008. The obsidian in the Aegean beyond Melos: an outlook from Yali. Oxford Journal of Archaeology 27(2): 101-117.
  • 10. KACZANOWSKA M. and KOZŁOWSKI J.K., 2008. Chipped stone artefacts. In: A. SAMPSON (Ed.), The cave of the Cyclops, Mesolithic and Neolithic networks in the northern Aegean, Greece, Intra site analysis, Local Industries, and Regional Site Distribution. INSTAP Academic Press, Philadelphia, Pennsylvania: 169-178.
  • 11. KACZANOWSKA M., KOZŁOWSKI J.K. and SOBCZYK K., 2010. Upper Palaeolithic human occupation and material culture at Klissoura Cave 1. Eurasian Prehistory 7(2): 133-286.
  • 12. KATSAROS T., 2006. Ikariaka Symeikta (in Greek). Athens.
  • 13. KOPAKA K. and MATZANAS C., 2009. Palaeolithic industries from the island of Gavdos, near neighbour to Crete in Greece. Antiquity Project Gallery 83: 321.
  • 14. KOZŁOWSKI J.K. and KACZANOWSKA M., 2009. The Mesolithic of the Aegean Basin: how to interpret the pre- Neolithic settlement of the Aegean island and its role in the Neolithization of south-eastern Europe. In: J.J. SHEAN and D.E. LIEBERMAN (Eds.), Transitions in Prehistory. Oxbow, p. 357-384.
  • 15. KTENAS C.A., 1927. Decouverte du Pliocene inferieur marin dans 1'ile de Nikaria (Mer Egee). Comptes Rendus de l'Academie des Sciences de Paris 184: 756-758.
  • 16. KTENAS C.A., 1969. La geologie de 1'ile de 1'Ikaria (Redigee des restes de 1'auteur par G. Marinos). Geological and Geophysical Researches, Athens 13: 57-85.
  • 17. LAMBECK K., 1996. Sea-level change and shore-line evolution in Aegean Greece since Upper Palaeolithic time. Antiquity 70: 588-611.
  • 18. LASKARIS N., 2010. Application of spectroscopic and microscopic methods of analysis for the improvement of the Obsidian Hydration Dating (in Greek). Unpublished Ph.D. thesis, University of the Aegean, Department of Mediterranean Studies, Rhodes.
  • 19. LASKARIS N., SAMPSON A., MAVRIDIS F. and LIRITZIS I., 2011. Late Pleistocene/Early Holocene seafaring in the Aegean: new obsidian hydration dates with the SIMS-SS method. Journal of Archaeological Science 38: 2475-2479.
  • 20. LIRITZIS I., 2006. SIMS-SS. A new obsidian hydration dating method: Analysis and theoretical principles. Archaeometry 48(3): 533-547.
  • 21. LIRITZIS I., DIAKOSTAMATIOU M., STEVENSON C.M., NOVAK S. W. and ABDELREHIM I., 2004. Dating of hydrated obsidian surfaces by SIMS-SS. Journal of Radioanalytical and Nuclear Chemistry 261: 51-60.
  • 22. LIRITZIS I., BONINI M. and LASKARIS N., 2008a. Obsidian hydration dating by SIMS-SS: surface suitability criteria from atomic force microscopy. Surface and Interface Analysis 40: 458-463.
  • 23. LIRTTZIS I., LASKARIS N. and BONINI M., 2008b. Nano- and micro- scale resolution in ancient obsidian artifact surfaces: the impact of AFM on the obsidian hydration dating by SIMS-SS. Physica Status Solidi 5(12): 3704-3707.
  • 24. LIRITZIS I. and LASKARIS N., 2009. Advances in obsidian hydration dating by Secondary Ion Mass Spectrometry: World examples, Nuclear Instruments and Methods. Physics Research B, 267: 144-150.
  • 25. LIRITZIS I. and LASKARIS N., 2010, The SIMS-SS obsidian hydration dating method. In: I. LIRITZIS and C.M. STEVENSON (Eds.), The Dating and Provenance of Obsidian and Ancient Manufactured Glasses. New Mexico Press, Albuquergue (in press).
  • 26. LIRITZIS I. and LASKARIS N., 2011. Fifty years of obsidian hydration dating in archaeology. Journal of Non- Crystalline Solids 357: 211-219.
  • 27. LIRITZIS I. and STEVENSON C.M. (Eds)., 2011. Obsidian and Ancient Manufactured Glasses. University of New Mexico Press, Albuquerque.
  • 28. LOMAX J., HILGERS A., TWIDALE C.R., BOURNE J.A. and RADTKE U., 2007. Treatment of broad palaeodose distributions in OSL dating of dune sands from the western Murray Basin, South Australia. Quaternary Geochronology 2: 51-56.
  • 29. LYKOUSIS V., ANAGNOSTOU C., PAVLAKIS P., ROUSAKIS G. and ALEXANDRI M., 1995. Quaternary sedimentary history and neotectonic evolution of the eastern part of the Central Aegean Sea, Greece. Marine Geology 128:59-71.
  • 30. MICHAEL C.T. and ZACHARIAS N., 2000. A new technique for thick-source alpha counting determination of U and Th. Nuclear Instruments and Methods 439: 167-177.
  • 31. MURRAY A.S. and WINTLE A.G. 2000. Luminescence dating of quartz using an improved single - aliquot regenerative - dose protocol. Radiation Measurements 32: 57-73.
  • 32. PAPANNIKOLAOU D., 1978. Contribution to the geology of Ikaria island, Aegean sea. Annales Geologiques des Pays Helleniques 29: 1-28.
  • 33. SAMPSON A. (Ed.), 2008. The Neolithic and Bronze Age Occupation of the Sarakenos Cave in Boeotia. Cave Settlement Patterns and Population Movements in Central and Southern Greece. University of the Aegean and Polish Academy of Sciences, Athens.
  • 34. SAMPSON A., 2010, Mesolithic Greece (in Greek). ed. Ion, Athens.
  • 35. SAMPSON A. (Ed.), 2011. The Cyclops Cave on the island of Youra, Greece. Mesolithic and Neolithic networks in the Northern Aegean Basin. Bone tool industries, Dietary resources and the Paleoenvironment, and Archaeometrical Studies. INSTAP Monograph Series Vol. 2. Academic Press, Philadelphia.
  • 36. SAMPSON A., KACZANOWSKA M. and KOZŁOWSKI J.K., 2008.The first Mesolithic site in the eastern part of the Aegean basin: excavations into the site Kerame 1 on the island of Ikaria in 2008. Rocznik PAU 2007/2008: 321-329.
  • 37. SAMPSON A., KACZANOWSKA M. and KOZŁOWSKI J.K., 2010. The Prehistory of the Island of Kythnos (Cyclades, Greece) and the Mesolithic settlement at Maroulas. PAU, Kraków.
  • 38. SAMPSON A., KOZŁOWSKI J.K. and KACZANOWSKA M., 2003. Mesolithic chipped stone industries from the Cyclops Cave, Youra. In: N. GALANIDOU and C. PERLES (Eds.), The Greek Mesolithic - Problems and Perspectives. British School at Athens Studies 10: 123-130.
  • 39. SPOONER N.A., QUESTIAUX D.G. and AITKEN M.J., 2000. The use of sodium lamps for low-intensity laboratory safelighting for optical dating. Ancient TL 18: 45-48.
  • 40. STEVENSON C.M., ABDELREHIM I. and NOVAK S.W., 2004. High Precision Measurement of Obsidian Hydration Layers on Artefacts from the Hopewell Site Using Secondary Ion Mass Spectrometry. American Antiquity 69(3): 555-568.
  • 41. STIROS S.C., LABOREL J., LABOREL-DEGUEN F., PAPAGEORGIOU S., EVIN J. and PIRAZZOLI P.A., 2000. Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Marine Geology 170: 41-58.
  • 42. STRASSER T., THOMPSON N., PANAGOPOULOU E., KARKANAS P., RUNNELS C., MCCOY F., MURRAY P. and WEGMANN K., 2010. Stone Age seafaring in the Mediterranean. Evidence from the Plakias region for Lower Palaeolithic and Mesolithic habitation of Crete. Hesperia 79: 145-190.
  • 43. TSERMEGAS I., 2007. Znaczenie procesów naturalnych i antropogenicznych dla współczesnych przemian rzeźby Ikarii (in Polish). In: I. TSERMEGAS (Ed.), Warsztaty Geomorfologiczne „Naturalne i antropogeniczne procesy rzeźbotwórcze w warunkach śródziemnomorskich", Grecja 26.04-06.05. 2007. WGiSR UW, SGP, NUA, Warszawa: 52-63.
  • 44. WINTLE A.G. and MURRAY A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41 : 369-391.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82f4ed64-6a7f-4ace-a02e-e9fa0c73b3f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.