PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limitations of Applicability of the Green-Kubo Approach for Calculating the Thermal Conductivity of a Confined Liquid in Computer Simulations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
: Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ ) has been observed along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the estimation of limiting value of λ(τ ) in the transverse direction, where walls confine the liquid, is ambiguous.
Twórcy
autor
  • Institute of Molecular Physics Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznańn, Poland
  • President St. Wojciechowski PWSZ in Kalisz Nowy Swiat 4, 62-800 Kalisz, Poland
Bibliografia
  • [1] M. Bacon, S.J. Bradley, T. Nann, Graphene Quantum Dots, Part. Part. Syst. Char. 31(4), 415 (2014).
  • [2] R. Kubo, J. Phys. Soc. Japan 12 (1957).
  • [3] R. Zwanzig, Time-Correlation Functions and Transport Coefficients in Statistical Mechanics, Annu. Rev. Phys. Chem., 16 (1965).
  • [4] J. Petravic, P. Harrowell, Linear response theory for thermal conductivity and viscosity in therms of boundary fluctuations, Phys. Rew. E 71(061201) (2005).
  • [5] J. Petravic, P. Harrowell, An equilibrium calculation of thermal transport coefficients between two planes of arbitrary separation in a condensed phase, J. Chem. Phys. 124, 0445112 (2006).
  • [6] J. Petravic, P. Harrowell, Equilibrium calculations of viscosity and thermal conductivity across a solid-liquid interface using boundary fluctuations, J. Chem. Phys. 128(194710) (2008).
  • [7] A.E. Giannakopoulos, F. Sofos, T.E. Karakasidis, A. Liakopoulos, Unified description of size effects of transport properties of liquids flowing in nanochannels, Int. J. Heat Mass Tran. (55), 5087-5092 (2012).
  • [8] M. Frank, D. Drikakis, N. Asproulis, Thermal conductivity of nanofluid in nanochannels, Microfluid. Nanofluid. 19(5), 1011-1017 (2015).
  • [9] K. Hyzorek, K.V. Tretiakov, ˙ Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations, J. Chem. Phys. 144, 194507 (2016).
  • [10] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, J. W. Arrowsmith Ltd., Bristol, UK, 1987.
  • [11] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic, New York, 2005.
  • [12] J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory, J. Chem. Phys. 14 (1946).
  • [13] D. Heyes, Transport-Coefficients of Lennard-Jones Fluids – A Molecular-Dynamics and Effective-Hard-Sphere Treatment, Phys. Rev. B 37, 5677 (1988).
  • [14] K.V. Tretiakov, S. Scandolo, Thermal conductivity of solid argon for molecular dynamics simulations, J. Chem. Phys. 120(8), 3765-3769 (2004).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82f3d448-b87a-4f32-8c19-565643cbfbbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.