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Abstract. We investigate processor sharing queueing systems with non-homogeneous

customers having some random space requirements. Such systems have been used to

model and solve various practical problems occurring in the design of computer or

communicating systems. The above non-homogenity means that each customer (in-

dependently of others) has some random space requirement and his length (or amount

of work for his service) generally depends on the space requirement. In real systems,

a total sum of space requirements of customers presenting in the system is limited

by some constant value (memory capacity) V > 0. We estimate loss characteristcs

for such a system using queueing models with unlimited memory space.

1. Introduction

Egalitarian processor sharing (EPS) systems are used for modeling of com-

puter and communicating networks [1]. Presently, they are applicable to situ-

ations where a common resource is shared by a varying number of concurrent

users [2] (for example, to WEB-servers modeling [3]).

The EPS discipline was �rst introduced by Kleinrock [4] as a limiting case

for modeling time sharing systems. The aim of the paper is to analyze classical

and non-classical EPS systems. First, we shall analyze the classical EPS

system notated by M/G/1−EPS. All the customers present in the classical

M/G/1−EPS system are served simultaneously. If there are n > 1 customers

in the system at an arbitrary instant, then all of them are served at this instant

n times slowly than in the case of n = 1.
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Later on, the customer length means the amount of work necessary for

customer's service, i.e. the service time under condition that there are no

other customers in the system during his presence in it. Analogously, the

residual length of the customer means his residual service time after some

time instant under the same condition (see [2]).

We introduce the following additional assumption for the classical

M/G/1−EPS system. Assume that each customer is characterized by some

non-negative random capacity. This random variable can be interpreted as

a part of system's memory space used by the customer during his presence in

the system. A total sum of customer capacities σ(t) in the system at arbitrary

time t is referred as the total customers capacity.

The random value σ(t) can be limited by some constant value V
(0 < V < ∞), which is called the memory volume of the system. In this

case we have a non-classical processor sharing system that will be notated by

M/G/1(V )− EPS.
The purpose of the paper is

1) to obtain the non-stationary and stationary distribution of total cus-

tomers capacity in the system M/G/1 − EPS;
2) to determine some estimations of loss characteristics for systems

M/G/1(V )−EPS with limited memory space (V <∞) based on the model

with unlimited one;

3) to compare processor sharing systems M/G/1(V ) − EPS and

M/G/1 − EPS from the viewpoint of estimation of loss characteristics.

2. Classical processor sharing system

In this section we investigate the classical system M/G/1−EPS. Denote by
η(t) the number of customers present in the system at time t and by ξ∗i (t) the
residual length of the ith customer at this time, i = 1, η(t). Let

F (x, t) = P{ζ < x, ξ < t}

be the joint distribution function of the customer capacity ζ and his length

ξ (we assume that customer's capacity and his length do not depend on his

arrival time and on characteristics of other customers). Then L(x) = F (x,∞)
and B(t) = F (∞, t) are the distribution functions of the random variables ζ
and ξ, respectively. Let a be an arrival rate of entrance �ow of customers,

α(s, q) =
∫ ∞

0

∫ ∞

0
e−sx−qtdF (x, t)

be the double Laplace-Stieltjes transform (with respect to x and t) of the dis-
tribution function F (x, t), ϕ(s) = α(s, 0), and β(q) = α(0, q) be the Laplace-
Stieltjes transform of the distributin functions L(x) and B(t), respectively.



Processor sharing queueing systems 151

D(x, t) = P{σ(t) < x} is the distribution function of total customers capacity

at time t,

δ(s, t) = Ee−sσ(t) =
∫ ∞

0
e−sxdxD(x, t)

is the Laplace-Stieltjes transform of the function D(x, t) with respect to x,

δ(s, q) =
∫ ∞

0
e−qtEe−sσ(t)dt =

∫ ∞

0
e−qtδ(s, t)dt

is the Laplace transform of the function δ(s, t) with respect to t.
The mixed (i+j)th moments of the random variables ζ and ξ (if they exist)

take the form:

αi j = E(ζiξj) = (−1)i+j ∂i+j

∂si∂qj
α(s, q)

∣∣∣
s=0,q=0

.

Assume that customers in the considered system at an arbitrary time t are
numerated as random; i.e. if the number of customers is k, then there are k!
ways to enumerate them, and each enumeration can be chosen with the same

probability 1/k!.
One can easily show that the system under consideration is described by

the Markov process

(η(t), ξ∗i (t), i = 1, η(t)), (1)

where components ξ∗i (t) are absent if η(t) = 0. In this case we also have

σ(t) = 0.
In what follows, to simplify the notation, we denote Yk = (y1, . . . , yk).

Sometimes in the case k = 1, instead of Y1 we write y1 or the value that

this component takes, and in the case k = 2, instead of Y2 we write (y1, y2) or
their values. In other words, we sometimes specify vectors of small dimensions

by indicating their components. We also use the notation (y1, . . . , yk, u) =
= (Yk, u).

We characterize the process (1) by functions with the following probabilistic

sense:

P0(t) = P{η(t) = 0}; (2)

Θk(Yk, t) = P{η(t) = k, ξ∗j (t) < yj, j = 1, k}, k = 1, 2, . . . ; (3)

Pk(t) = P{η(t) = k} = Θk(∞k, t), k = 1, 2, . . . , (4)

where ∞k = (∞, . . . ,∞) is a k-component vector.

Note that the functions Θk(Yk, t) are symmetric with respect to permu-

tations of components of the vector Yk due to our random enumeration of

customers in the system.
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Let us determine the function δ(s, q) under zero initial condition η(0) =
= σ(0) = 0.

Denote by p0(q) =
∫ ∞

0
e−qtP0(t)dt and θk(Yk, q) =

∫ ∞

0
e−qtΘk(Yk, t)dt

the Laplace transforms with respect to t of the functions P0(t) and Θk(Yk, t),
respectively. It is known (see [2]) that

p0(q) = [q + a− aπ(q)]−1 (5)

under zero initial condition, where π(q) is the Laplace-Stieltjes transform

of the busy period distribution function for the system under considera-

tion. Note [2] that π(q) is a unique solution of the functional equation

π(q) = β(q + a− aπ(q)) such that |π(q)| ≤ 1.
Lemma 1. Under zero initial condition, the functions θk(Yk, q), where

k = 1, 2, . . . , have the following form:

θk(Yk, q) = p0(q)
k∏

i=1

∫ yi

0
[q + a− aB(u)]du.

Proof. Using the method of auxiliary variables [5] and taking into account

the symmetric property of the functions Θk(Yk, t), we can write out partial

di�erential equations for functions (3):

∂Θ1(y, t)
∂t

− ∂Θ1(y, t)
∂y

+
∂Θ1(y, t)

∂y

∣∣∣∣
y=0

= aP0(t)B(y)− aΘ1(y, t)+

+
∂Θ2(y, u, t)

∂u

∣∣∣∣
u=0

; (6)

∂Θk(Yk, t)
∂t

− ∂Θk(Yk, t)
∂yk

+
∂Θk(Yk, t)

∂yk

∣∣∣∣
yk=0

= aΘk−1(Yk−1, t)B(yk)−

−aΘk(Yk, t) +
∂Θk+1((Yk, u), t)

∂u

∣∣∣∣
u=0

, k = 2, 3, . . . . (7)

Passing to Laplace transform in the equations (6), (7), we obtain

−∂θ1(y, q)
∂y

= ap0(q)B(y)− (q + a)θ1(y, q)−
∂θ1(y, q)

∂y

∣∣∣∣
y=0

+

+
∂θ2(y, u, q)

∂u

∣∣∣∣
u=0

; (8)

−∂θk(Yk, q)
∂yk

= aθk−1(Yk−1, q)B(yk)− (q + a)θk(Yk, q)−
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−∂θk(Yk, q)
∂yk

∣∣∣∣
yk=0

+
∂θk+1((Yk, u), q)

∂u

∣∣∣∣
u=0

, k = 2, 3, . . . . (9)

By direct substitution, we can prove that the solution of Eqs. (8) and (9)

has the form

θk(Yk, q) = C(q)
k∏

i=1

∫ yi

0
[q + a− aB(u)]du, (10)

where C(q) is some function that can be determined if we substitute the

relation (10) into Eq. (8). Then, we have C(q) = p0(q).
The lemma is proved.

Let βi = Eξi = (−1)iβ(i)(0) be the ith moment of the customer length,

i = 1, 2, . . . .
Corollary 1. If ρ = aβ1 < 1, then the limits θk(Yk) = lim

t→∞Θk(Yk, t),
k = 1, 2, . . . , exist being independent of initial condition and have the form:

θk(Yk) = (1− ρ)ak
k∏

i=1

∫ yi

0
[1−B(u)]du.

Proof. If ρ < 1, then the process (1) is regenerative with points of re-

generation coinciding with epochs of termination of busy periods. It follows

from the theory of regenerative processes [6] that the limit lim
t→∞Θk(Yk, t) =

= θk(Yk) exists and

θk(Yk) = lim
q→0

qθk(Yk, q) = (1− ρ)ak
k∏

i=1

∫ yi

0
[1−B(u)]du.

Corollary 2. Let pk(q) be the Laplace transform of the function Pk(t),
k = 0, 1, . . . , under zero initial condition. Then we have

pk(q) =
ak(1− π(q))k

(q + a− aπ(q))k+1
.

Proof. It is obvious that pk(q) = θk(∞k, q). Let us prove the equality∫ ∞

0
(q + a− aB(y))dy =

a(1− π(q))
q + a− aπ(q)

. (11)

It follows from the normalization condition written in terms of Laplace trans-

forms that

p0(q) +
∞∑
k=1

θk(∞k, q) = 1/q,
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whence, taking into account the result of lemma 1, we obtain:

1 +
∞∑
k=1

[∫ ∞

0
(q + a− aB(y))dy

]k
=

1
q
[q + a− aπ(q)].

From the last relation we have (11). Now, the statement of the corollary

follows from formulae (5) and (10).

From corollary 1 we can obtain the known relation for the stationary dis-

tribution {pk} of the number of customers in the system (ρ = aβ1 < 1)[2]:

pk = θk(∞k) = (1− ρ)ρk, k = 0, 1, . . . .

Let χ(t) be the capacity of a customer being on service at the time t and
ξ∗(t) be the residual length of this customer at the time t. We shall use the

notation Ey(x) = P{χ(t) < x| ξ∗(t) = y}. It is known [7] that the Laplace�

Stieltjes transform of the conditional distribution function Ey(x) has the form:

ey(s) = [1−B(y)]−1

∫ ∞

x=0
e−sx

∫ ∞

u=y
dF (x, u). (12)

We introduce the notation

dYk
Θk(Yk, t) = P{η(t) = k, ξ∗i (t) ∈ [yi, yi + dyi), i = 1, k} =

=
∂kΘk(Yk, t)
∂y1 . . . ∂yk

dy1 . . . dyk.

Later on, we use the notation ∗
i=1

k
Ri(x) for Stieltjes convolution of distribution

functions Ri(x), i = 1, 2, . . . , Ri(x) = 0, if x ≤ 0.
Theorem 1. For zero initial condition, the function δ(s, q) is determined

by the relation

δ(s, q) = {[q + a− aπ(q)][1 − I(s, q)]}−1,

where

I(s, q) =
∫ ∞

0
(q + a− aB(y))ey(s)dy

and ey(s) is determined by relation (12).

Proof. The distribution function D(x, t) can be represented as

D(x, t) = P0(t)+

+
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
P{σ(t) < x| η(t) = k, ξ∗i (t) = yi, i = 1, k}dYk

Θk(Yk, t).
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From the random enumeration of components of the vector Yk it is obvious

that

P{σ(t) < x| η(t) = k, ξ∗i (t) = yi, i = 1, k} = ∗
i=1

k
Eyi(x).

Then we get:

D(x, t) = P0(t) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
∗
i=1

k
Eyi(x)dYk

Θk(Yk, t).

Passing in the last relation to Laplace�Stieltjes transform with respect to x,
we have:

δ(s, t) = P0(t) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)dYk
Θk(Yk, t).

Passing to Laplace transform with respect to t, we obtain:

δ(s, q) = p0(q) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)dYk
θk(Yk, q),

where dYk
θk(Yk, q) = p0(q)

k∏
i=1

[q + a− aB(yi)]dyi (it follows from Eq. (8) and

the relation C(q) = p0(q)). Then we get:

δ(s, q) = p0(q) + p0(q)
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)[q + a− aB(yi)]dyi =

= p0(q)

{
1 +

∞∑
k=1

[∫ ∞

0
(q + a− aB(y))ey(s)dy

]k}
=

= p0(q)

[
1 +

∞∑
k=1

(I(s, q))k
]
, (13)

where

I(s, q) =
∫ ∞

0
(q + a− aB(y))ey(s)dy.

Now, the statement of the theorem follows from formula (13).

Corollary 3. If the random variables ζ and ξ are independent, we obtain:

δ(s, q) = [q + a(1− π(q))(1 − ϕ(s))]−1. (14)
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Proof. In this case, taking into account Equation (12) and the relation

F (x, t) = L(x)B(t), we have that

I(s, q) =
∫ ∞

y=0

q + a− aB(y)
1−B(y)

∫ ∞

x=0
e−sx

∫ ∞

u=y
dF (x, u) =

= ϕ(s)
∫ ∞

0
[q + a− aB(y)]dy =

aϕ(s)(1− π(q))
q + a− aπ(q)

,

whence relation (14) follows.

Corollary 4. Under zero initial condition, the Laplace transform g(s, q)

with respect to t of generation function P (z, t) =
∞∑
k=0

Pk(t)zk, |z| ≤ 1, of the

customers number in the system at time t has the following form:

g(z, q) =
∫ ∞

0
e−qtP (z, t)dt = [q + a(1− z)(1− π(q))]−1. (15)

Proof. It follows from corollary 1 that in the case when the customer

length does not depend on his capacity and the capacity is equal to 1, we have

ϕ(s) = e−s and

δ(s, q) = [q + a(1− π(q))(1 − e−s)]−1 =

=
∫ ∞

0
e−qtEe−sσ(t)dt =

∫ ∞

0
e−qtP (e−s, t)dt,

whence Eq. (15) follows if we substitute e−s by z.

Corollary 5. Let ρ = aβ1 < 1. Then stationary mode exists. The Laplace�

Stieltjes transform δ(s) of the stationary distribution function

D(x) = limt→∞D(x, t) of customers total capacity has the form:

δ(s) =
1− ρ

1 + aα′
q(s, q)|q=0

. (16)

Note that relation (16) was �rst obtained by Sengupta [8].

Proof. It follows from the theory of regenerative processes [6] that the

limit δ(s) = limt→∞ δ(s, t) exists and

δ(s) = lim
q→0

qδ(s, q) = (1− ρ) lim
q→0

[1− I(s, q)]−1,

where, as it follows from theorem 1,
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lim
q→0

I(s, q) = a

∫ ∞

0
[1−B(y)]ey(s)dy =

= a

∫ ∞

x=0

∫ ∞

u=0
ue−sxdF (x, u) = −aα′

q(s, q)|q=0,

whence the statement of the corollary follows.

Corollary 6. Let δ1(t) be the �rst moment of the total customers capacity

σ(t) under zero initial condition, δ1(q) be the Laplace transform of the function

δ1(t). Then we have:

δ1(q) =
aα11 + q

∫∞
0

∫∞
0 xS(t)dF (x, t)

[q + a− aπ(q)]
[
1− ρ− q

∫∞
0 S(t)dB(t)

]2 ,
where S(t) =

∫ t

0
[1−B(y)]−1dy.

Let σ be a stationary total customers capacity (σ(t) ⇒ σ in the sense of

a weak convergence). The following known formulae [8]

δ1 = Eσ = −δ′(0) = aα11

1− ρ
, δ2 = Eσ2 = δ′′(0) =

aα21

1− ρ
+ 2δ21 (17)

can be obtained from relation (16).

For some special cases we can get the distribution function D(x) from

formula (16). For example, consider the case when customer's capacity ζ and
his length ξ are connected by the relation ξ = cζ+ξ1, c > 0, where the random
variables ζ and ξ1 are independent (such dependence for customer's capacity

and his length is true for many real information systems).

Denote by κ1 = Eξ1 the �rst moment of the random variable ξ1. In this case
we have α(s, q) = ϕ(s+ cq)κ(s), where κ(s) is the Laplace�Stieltjes transform
of the distribution function of the random variable ξ1. Then relation (16)

takes the following form:

δ(s) =
1− ρ

1 + a[cϕ′(s)− κ1ϕ(s)]
. (18)

Assume that customer capacity ζ has an exponential distribution with the

parameter f > 0. Then from formula (18) we obtain:

δ(s) =
(1− ρ)(s+ f)2

(s+ f)2 − ρ1f2 − ρ2f(s+ f)
,

where ρ1 = ac/f , ρ2 = aκ1, so that ρ = aβ1 = ρ1 + ρ2.
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Now we can determine the inverse Laplace transform of δ(s)/s, where

δ(s) is de�ned by formula (18), and obtain the stationary distribution

function D(x):

D(x) = 1− (1− ρ)e−fx

2b

[
(ρ2 + b)2e(ρ2+b)fx/2

2− ρ2 − b
− (ρ2 − b)2e(ρ2−b)fx/2

2− ρ2 + b

]
, (19)

where b =
√
ρ2
2 + 4ρ1.

3. Estimation of loss characteristics

The M/G/1 − EPS is a system without losing of customers (V = ∞). But

with the help of this model we can estimate the memory capacity V in order

to guarantee inexceeding of given loss probability.

Assume that we have a stationary queueing system Q∞ with Poisson en-

trance �ow without losses of customers. Let QV be a stationary system that

di�ers from Q∞ only with the fact that its total capacity is limited by the

constant value V . We denote by D(x) the distribution function of total cus-

tomers capacity for the system Q∞ and by DV (x) the distribution function of

this random value for the system QV .

Theorem 2. The inequality D(x) ≤ DV (x) takes place for all x > 0.
Proof of the theorem can be found in [7].

It follows from theorem 2 that the loss probability P for the system QV

satis�es the following inequality [7]:

P = 1−
∫ V

0
DV (V − x)dL(x) ≤ 1−

∫ V

0
D(V − x)dL(x) = P ∗. (20)

Thus, the value P ∗ is an upper estimation of loss probability for the system

QV . If we choose V under condition that P ∗ is given so that the equality∫ V

0
D(V − x)dL(x) = 1− P ∗

is satis�ed, then the real loss probability P does not exceed P ∗. If only very

rare losses are permitted in the system under consideration, the di�erence

between the values P and P ∗ is inessential.

Note that the loss probability is not exhaustive characteristic of losses,

because its value shows a part of lost customers, not a part of lost capacity

or, in other words, information being lost. Really, it is obvious that customers

having large capacity will be lost more often. Therefore, more objective losses

estimation is the value

Q = 1− 1
ϕ1

∫ V

0
xDV (V − x)dL(x).
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The value Q is the probability of losing a unit of customer capacity. The

next inequality follows from theorem 2:

Q = 1− 1
ϕ1

∫ V

0
xDV (V − x)dL(x) ≤ 1− 1

ϕ1

∫ V

0
xD(V − x)dL(x) = Q∗.

If only very rare losses are permitted in the system under consideration,

the di�erence between the values Q and Q∗ is inessential.

For example, in the case of the distribution function (19) we obtain:

P ∗ =

{
1− 1− ρ

b

[
a1

1− e−(1−b1)fV

b+ ρ2
+ a2

1− e−(1−b2)fV

b− ρ2

]}
e−fV ,

where a1 =
(ρ2 + b)2

2− ρ2 − b
, a2 =

(ρ2 − b)2

2− ρ2 + b
, b1 = −1 + ρ2 + b

2
, b2 = −1 + ρ2 − b

2
;

Q∗ =

{
1 + fV − 2(1− ρ)

b

[
(a1 + a2)fV

8ρ1
+

+a1
1− e−(1−b1)fV

(b+ ρ2)2
− a2

1− e−(1−b2)fV

(b− ρ2)2

]}
e−fV .

Note that in the most cases the calculation and estimation of the probability

Q is very complicated. Therefore, we often must restrict ourselves to the

calculation and estimation of the loss probability P .

If it is impossible to determine the form of the distribution function D(x),
we can estimate the value P ∗ by approximation of the function

Φ(x) =
∫ x

0
D(x− u)dL(u)

being the distribution function of the sum of independent random variables

σ and ζ, with the distribution function of the gamma distribution

Φ∗(x) = γ(h, rx)/Γ(h), where γ(h, rx) =
∫ hx

0
th−1e−tdt is the incomplete

gamma function, Γ(h) = γ(h,∞) is the gamma function. The parameters

h and r of the approximate distribution should be chosen so that its �rst

and second moments f∗1 = h/r and f∗2 = h(h + 1)/r2 should be equal to the

�rst and second moments of the distribution function Φ(x), respectively. It is
obvious that these moments have the form

f1 = δ1 + ϕ1, f2 = δ2 + ϕ2 + 2δ1ϕ1. (21)
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Thus, the parameters of the distribution function Φ∗(x) should be chosen

as follows:

h =
f2
1

f2 − f2
1

, r =
f1

f2 − f2
1

,

where f1 and f2 can be calculated from relations (17), (21). Hence, we have

the approximate formula

P ∗ ∼= 1− Φ∗(V ).

Note that in the case of not very small permissible loss probabilities, using

the estimation P ∗ instead of P leads to unjusti�ably surplus choice of the

capacity volume V . Therefore, the direct analysis of processor sharing systems

with limited memory space is very important.

4. The case of limited total capacity

The systemM/G/1(V )−EPS with customers of di�erent types was analyzed

in detail in [9, 10]. We shall concider a special case of customers of the same

type. Then, for stationary probabilities of number of customers present in the

system we have:

p0 =

( ∞∑
k=0

akA
(k)
∗ (V )

)−1

, pk = p0a
kA

(k)
∗ (V ), k = 1, 2, . . . ,

where A
(k)
∗ (x) is a kth order Stieltjes convolution of the function

A(x) =
∫ x

u=0

∫ ∞

t=0
udF (u, t).

The loss probability has the form:

P = 1− p0

[
L(V )−

∞∑
k=1

akA
(k)
∗ (V )

]
.

Assume additionally that customer capacity has an exponential distribution

with parameter f , and let the customer length be proportional to his capacity

(ξ = cζ, c > 0). Then, after some calculations we obtain

p0 =


1− ρ

1−√ρe−fV
[
sinh(

√
ρfV ) +

√
ρ cosh(

√
ρfV )

] , if ρ �= 1,

1 + e−2fV

1 + fV
, if ρ = 1;
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pk = p0ρ
k

[
1− e−fV

2k−1∑
i=0

(fV )i

i!

]
, k = 1, 2, . . . ;

P = p0e
−fV cosh(

√
ρfV ),

where ρ = ac/f .

Table 1: Probabilities P and Q for ρ = 0.6

V P ∗ Q∗ P Q

0.0 1.00000 1.00000 1.00000 1.00000

0.2 0.92721 0.99569 0.81994 0.98269

0.4 0.86622 0.98366 0.67754 0.94034

0.6 0.81392 0.96529 0.56700 0.88482

0.8 0.76815 0.94194 0.48156 0.82409

1.0 0.72735 0.91487 0.41516 0.76311

2.0 0.56855 0.75562 0.23586 0.51290

3.0 0.45178 0.60242 0.15775 0.35596

4.0 0.35651 0.47628 0.11281 0.25640

5.0 0.28750 0.37679 0.08340 0.18993

6.0 0.22947 0.29888 0.06291 0.14330

7.0 0.18316 0.23763 0.04811 0.10963

8.0 0.14620 0.18925 0.03716 0.08464

10.0 0.09314 0.12034 0.02263 0.05165

15.0 0.03018 0.03896 0.00697 0.01589

20.0 0.00978 0.01262 0.00222 0.00512

30.0 0.00103 0.00133 0.00023 0.00054

40.0 0.00011 0.00014 0.00002 0.01589

50.0 0.00001 0.00002 0.00000 0.00001

Now we can compare the values P ∗ and P or Q∗ and Q using analytical

results and simulation. Table 1 presents the dependence of loss characteristics

upon the memory capacity V . Here we assume that ρ = 0.6, the customer

length is proportional to his capacity (ξ = cζ), where c = 1, and capacity ζ
has an exponential distribution with parameter f = 1.

The values P ∗, Q∗, P were obtained by calculation from the above relations,

whereas the value Q was estimated by simulation. The table shows that

estimators P ∗, Q∗ are not very precise, and we can use them for the case

when the proper loss characteristics are near zero.
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