PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical and energetical properties in methane fermentation of morphological parts of corn with different variety earliness standard FAO

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Chemiczne i energetyczne właściwości wynikające z fermentacji metanowej morfologicznych części kukurydzy o różnym wskaźniku wczesności odmiany FAO
Języki publikacji
EN
Abstrakty
EN
In the last decades, the production of biomass biofuels for thermochemical conversion to replace fossil fuels has attracted increasing attention as it offers significant environmental benefits. A very common way to convert biomass to energy is methane fermentation. The importance of biogas as a source of energy is growing. The use of biomass to biogas production on a large, global scale may lead to controversial competition for arable land, water, and consequently, food. Therefore, only waste materials and agricultural by-products and residues should be used for biogas production. Corn stover is a good example of agricultural residues for biogas production. Therefore, the aim of these studies was to determine the influence of corn variety earliness FAO on the chemical compositions and energy value of morphological parts (fractions) of corn plants. The research material consisted of morphological parts of corn plants: stalks, leaves, husks, and cobs of selected corn cultivars, differing in terms of their FAO earliness: early (FAO 220), medium-early (FAO 240) and late (FAO 300) varieties. The research included laboratory investigations, elemental analysis, methane fermentation and statistical analyses of results. Based on the results of the study, it was concluded that the FAO earliness of a corn variety had a significant impact on the elemental composition, ash content, biogas, and methane yield in the corn morphological fractions. The highest methane yield of 267.4 m3 x Mg-1 TS was found for the cucurbit cover leaves of a variety with an FAO 240 earliness standard.
PL
W ostatnich dekadach produkcja biopaliw z biomasy do konwersji termochemicznej w celu zastąpienia paliw kopalnianych przyciąga coraz większą uwagę, ponieważ oferuje istotne korzyści dla środowiska. Fermentacja metanowa jest bardzo popularnym sposobem konwersji biomasy na energię. Znaczenie biogazu jako źródła energii wzrasta. Zastosowanie biomasy do produkcji biogazu na dużą, światową skalę może prowadzić do kontrowersji związanych z konkurowaniem o grunty orne, wodę, a w konsekwencji o żywność. Dlatego do produkcji biogazu powinny być wykorzystywane wyłącznie odpady, produkty uboczne oraz pozostałości rolnicze. Dobrym przykładem pozostałości rolniczych do produkcji biogazu jest słoma kukurydziana. Dlatego celem tych badań było określenie wpływu wzorca wczesności odmian FAO na skład chemiczny i wartość energetyczną części morfologicznych kukurydzy. Materiałem badawczym były morfologiczne części kukurydzy: łodygi, liście, liście okrywe, rdzenie kolb wybranych odmian kukurydzy zróżnicowane pod względem wskaźnika wczesności odmiany FAO: wczesne (FAO 220), średnio-wczesne (FAO 240) oraz późne (FAO 300). Badania obejmowały analizę chemiczną, fermentację metanową oraz analizę statystyczną wyników. Na podstawie wyników badań stwierdzono, że wskaźnik wczesności odmian FAO miał istotny wpływ na skład chemiczny, zawartość popiołu, uzysk biogazu i metanu z części morfologicznych kukurydzy. Najwyższy uzysk metanu 267,4 m3 Mg-1 TS osiągnięto dla liści okrywowych kukurydzy odmiany o wskaźniku wczesności FAO 240.
Rocznik
Strony
273--287
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
  • Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
  • Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
  • Department of Biosystems Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 50, 60-627 Poznań, Poland
Bibliografia
  • Aghbashlo, M., Tabatabaei, M., Mohammadi, P., Mirzajanzadeh, M., Ardjmand, M., Rashidi, A. (2016). Effect of an emission reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renewable Energy, 93, 353-68. doi.org/10.1016 /j.renene.2016.02.077.
  • Aghbashlo, M., Hosseinpour, S., Tabatabaei, M., Dadak, A. (2017). Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezoultrasonic reactor. Energy, 132, 65-78. doi.org/10.1016/j.energy.2017.05.041.
  • Aghbashlo, M., Tabatabaei, M., Hosseini, S.S., Dashti, B.B., Mojarab Soufiyan, M. (2018) Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. Journal of Clean Production, 171, 127-36. doi.org/10.1016/j.jclepro.2017.09.263.
  • Arini, W., Aep, S. (2018). Analysis of product and temperature of biogas combustion in various air biogas equivalence ratio and methane content. Indonesian Journal of Chemistry, 18(2), 211-221. doi.org/10.22146/ijc.23923.
  • Balanda, O., Serafinowska, D., Marchenko, O. & Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering, 26(1), 133-144. https://doi.org/10.2478/agriceng-2022- 0011.
  • Bayrakci, A.G., Koçar, G. (2012). Utilization of renewable energies in Turkey's agriculture. Renewable Sustainable Energy Review, 16, 618-633. doi.org/10.1016/j.rser.2011.08.027.
  • Bovo, M., Giani, N., Barbaresi, A., Mazzocchetti, L., Barbaresi, L., Giorgini, L., Torreggiani, D., Tassinari, P. (2022). Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy and Buildings, 262, 111994. doi.org/10.1016/j.enbuild. 2022.111994.
  • Budzianowski, W.M. (2012). Sustainable biogas energy in Poland: prospects and challenges. Renewable Sustainable Energy Review, 16(1), 342-349. doi.org/10.1016/j.rser.2011.07.161.
  • Budzianowski, W.M., Chasiak, I. (2011). The expansion of biogas power plants in Germany during the 2001-2010 decade: main sustainable conclusions for Poland. Journal Power Technology, 91, 102-113.
  • Cergibozan, R. (2022). Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries. Renewable Energy, 183, 617-626. doi.org/10.1016/ j.renene.2021.11.056.
  • Czajkowski, Ł., Wojcieszak, D., Olek, W., Przybył, J. (2019) Thermal properties of fractions of corn stover. Construction and Building Materials, 210, 709-712. doi.org/10.1016/j.conbuildmat .2019.03.092.
  • Cieślik, M., Dach, J., Lewicki, A., Smurzyńska, A., Janczak, D., Pawlicka-Kaczorowska, J., Boniecki, P., Cyplik, P., Czekała, W., Jóźwiakowski, K. (2016). Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy, 115, 1495-502. doi.org/10.1016/j.energy.2016.06.070.
  • Czekała, W., Nowak, M. & Bojarski, W. (2023). Anaerobic Digestion and Composting as Methods of Bio-Waste Management. Agricultural Engineering, 27(1), 173-186. https://doi.org/10.2478/agriceng-2023-0013.
  • Dach, J., Boniecki, P., Przybył, J., Janczak, D., Lewicki, A., Czekała, W., Witaszek, K., Rodríguez Carmona, P.C., Cieślik, M. (2014). Energetic efficiency analysis of the agricultural biogas plant in 250 kWe experimental installation. Energy, 69, 34-38. doi.org/10.1016/j.energy.2014.02.013.
  • Evans, J.D. (1996). Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996.
  • Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renewable Sustain Energy Review, 72, 445-64. doi.org/10.1016/j.rser.2017.01.034.
  • Hassan, M., Ding, W., Umar, M., Hei, K., Bi, J., Shi, Z. (2017). Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge. Energy, 118, 1256-1263. doi.org/10.1016/j.energy.2016.11.007.
  • Hosseinpoura, S., Aghbashloa, M., Tabatabaeib, M. Mehrpooya, M. (2017). Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-adapted partial least squares (INNPLS). Energy, 138, 473-479. doi.org/10.1016/j.energy.2017.07.075.
  • Khalife, E., Tabatabaei, M., Demirbas, A., Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi.org/10.1016/j.pecs.2016.10.001.
  • Kraszkiewicz, A., Kachel-Jakubowska, M., Szpryngiel, M., Niedziółka, I. (2013). The analysis of the selected quality properties of pellets made of plant raw materials. Agriculture Engineering, 143(1), 167-173.
  • Li, Y., Park, S.Y., Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable Sustainable Energy Review, 15, 821-826. doi.org/10.1016/j.rser.2010.07.042.
  • Li, Z., Zhai, H., Zhang, Y., Yu, L. (2012). Cell morphology and chemical characteristics of corn stover fractions. Industrial Crops Production, 37, 130-136. doi.org/10.1016/j.indcrop.2011.11.025.
  • Lizotte, P.L., Savoie, P., De Champlain, A. (2015). Ash content and calorific energy of corn stover components in eastern Canada. Energies, 8, 4827-4838. doi.org/10.3390/en8064827.
  • Maj, G., Szyszlak-Bargłowicz, J., Zajac, G., Słowik, T., Krzaczek, P., Piekarski, W. (2019). Energy and emission characteristics of biowaste from the corn grain drying process. Energies, 12, 4383. /doi.org/10.3390/en12224383.
  • Mazurkiewicz, J., Marczuk, A., Pochwatka, P., Kujawa, S. (2019). Maize straw as a valuable energetic material for biogas plant feeding. Materials, 12, 3848. doi.org/10.3390/ma12233848.
  • Menardo, S., Airoldi, G., Cacciatore, V., Balsari, P. (2015). Potential biogas and methane yield of maize stover fractions and evaluation ofsome possible stover harvest chains. Biosystems Engineering, 129, 352-359. doi.org/10.1016/j.biosystemseng.2014.11.010.
  • Niedziółka, I., Zaklika, B. (2016). Assessment of physical properties of briquettes made of mixtures of selected plant raw materials and post-fermentation waste. Agricultural Engineering, 20(1), 101-110. doi.org/10.1515/agriceng-2016-0010.
  • Pordesimoa, L.O., Hamesb, B.R., Sokhansanjc, S., Edensd, W.C. (2005). Variation in corn stover composition and energy content with crop maturity. Biomass and Bioenergy, 28, 366-374. doi.org/10.1016/j.biombioe.2004.09.003.
  • Rajaeifar, M.A., Ghanavati, H., Dashti, B.B., Heijungs, R., Aghbashlo, M., Tabatabaei, M. (2017). Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review. Renewable Sustainable Energy Review, 79, 414-439. doi.org/10.1016/j.rser.2017.04.109.
  • Shinners, K.J., Binversie, B.N., Muck, R.E., Weimer, P.J. (2007). Comparison of wet and dry corn stover harvest and storage. Biomass and Bioenergy, 31, 211-221. doi.org/10.1016/j.biombioe.2006.04.007.
  • Sutaryo, S., Ward, A.J., Møller, H.B. (2012). Thermophilic anaerobic co-digestion of separated solids from acidified dairy cow manure. Bioresource Technology, 114, 195-200. doi.org/10.1016/ j.biortech.2012.03.041.
  • Szemmelveisz, K., Szucs, I., Palotás, A.B., Winkler, L., Eddings, E.G. (2009). Examination of the combustion conditions of herbaceous biomass. Fuel Processing Technology, 90(6), 839-847. doi.org/10.1016/j.fuproc.2009.03.001.
  • Wojcieszak, D., Przybył, J., Myczko, R., Myczko, A. (2018). Technological and energetic evaluation of maize stover silage for methane production on technical scale. Energy, 151, 903-912. doi.org/10.1016/j.energy.2018.03.082.
  • Wojcieszak, D., Przybył, J., Ratajczak, I., Goliński, P., Janczak, D., Waśkiewicz, A., Szentner, K., Woźniak, M. (2020). Chemical composition of maize stover fraction versus me-thane yield and energy value in fermentation process. Energy, 198, 117258. doi.org/10.1016/j.energy.2020.117258.
  • Wojcieszak, D., Przybył, J., Czajkowski, Ł., Majka J., Pawłowski, A. (2022). Effects of harvest maturity on the chemical and energetic properties of corn stover biomass combustion. Materials, 15, 2831. doi.org/10.3390/ma15082831.
  • Zając, G., Maj, G., Szyszlak-Bargłowicz, J., Słowik, T., Krzaczek, P., Gołebiowski, W., Debowski, M. (2020). Evaluation of the proper-ties and usefulness of ashes from the corn grain drying process biomass. Energies, 13, 1290. doi.org/10.3390/en13051290.
  • Zych, A. (2008). The vability of corn cobs as a bioenergy feedstock. A report of the West Central Research and Outreach Center. University of Minnesota; 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82e0d423-9500-41b9-a326-99c293a1b4a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.