PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Air-Flow Rate and Biochar Addition on the Oxygen Concentration in Waste and Emitted Gases During Biostabilization of Undersized Fraction from Municipal Solid Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical biological treatment of waste is still one of the most popular methods for mixed municipal waste treatment. The result of mechanical processing of waste is sorting out: the undersized fraction from municipal solid waste (UFMSW) with granulation below 80 mm, rich in biodegradable organic waste (mainly including food waste, paper, wood, etc.). UFMSW is treated in biological processes in order to reduce the negative environmental effect of this waste. Unfortunately, the processing is not neutral to the environment. The correct course of the aerobic biostabilization process depends on the activity of microorganisms, the intensity of aeration, and the oxygen content in the processed waste. The aim of this paper was to analyze the effect of air-flow rate and biochar addition on the oxygen concentration in waste and in emitted gases during the intensive phase of UFMSW biostabilization. The study was performed under laboratory conditions. Six different variants of the process (without biochar addition and using 1.5; 3; 5; 10 and 20% of biochar addition) were applied. Subsequent replicates were conducted using an averaged air-flow rate of 0.1, 0.2, and 0.4 m3∙d-1∙kg dm.org-1. As a result of the conducted experiments, it was found that both the air-flow rate and the addition of biochar have a significant effect on the oxygen concentration in the treatment waste, as well as its content in the outlet air. Using the highest air-flow rate resulted in the oxygen content not decreasing below 14%, both in the free spaces between the waste and in the emitted gases, while the addition of biochar significantly reduced the oxygen concentration. In the case of lower air-flow rate values, the oxygen content decreased even below 5%. It was found that a high addition of biochar (10 and 20% by weight) at the lowest air-flow rate resulted in the occurrence of anaerobic zones in waste in the first days of the intensive process (between days 2 and 6 of the process), as well as absence of oxygen in the outlet air (between days 2 and 4 of the process). Despite this, no methane (biogas) emissions were found in any of the conducted experiments.
Rocznik
Strony
136--144
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Department of Bioprocesses Engineering, Energetics and Automatization, University of Agriculture in Krakow, ul. Balicka 116b, 30-149 Kraków, Poland
Bibliografia
  • 1. Agyarko-Mintah E., Cowie A., Pal Singh B., Joseph S., Van Zwieten L., Cowie A., Harden S., Smillie R. 2017a. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manage. 61, 138–149.
  • 2. Agyarko-Mintah E., Cowie A., Van Zwieten L., Pal Singh B., Smillie R., Harden S., Fornasier F. 2017b. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manage. 61, 129–137.
  • 3. Ahn H.K., Richard T.L., Glanville T.D. 2008. Laboratory determination of compost physical parameters for modeling of airflow characteristics. Waste Manage. 28 (3), 660–670.
  • 4. Akdeniz N. 2019. A systematic review of biochar use in animal waste composting. Waste Manage. 88, 291–300.
  • 5. Baran D., Famielec S., Koncewicz-Baran M., Malinowski M., Sobol Z. 2016. The changes in exhaust gas and selected waste properties during biostabilization process. Proc. ECOpole. 10 (1), 11–18.
  • 6. BAT, 2018. Commission Implementing Decision (EU) 2018/1147 of 10 August 2018 establishing best available techniques (BAT) conclusions for waste treatment, under Directive 2010/75/EU of the European Parliament and of the Council. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D1147&from=EN (accessed: 17 October 2019).
  • 7. Baptista M., Antunes F., Goncalves M.S., Morvan B., Silveira A. 2010. Composting kinetics in fullscale mechanical-biological treatment plants. Waste Manage. 30 (10), 1908–1921.
  • 8. Białowiec A., 2018. Tlenowa biostabilizacja odpadów komunalnych. Obliczenia projektowe i eksploatacyjne. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu. (in Polish).
  • 9. Contreras-Cisneros R.M., Orozco-Álvarez C., Piña-Guzmán A.B., Ballesteros-Vásquez L.C., Molina-Escobar L., Alcántara-García S.S., Robles-Martínez F. 2021. The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles. Processes 9, 520.
  • 10. Czekała W., Dach J., Malińska K., Przybył J., Myszura M. 2015. Dynamic of gaseous emissions during composting of sewage sludge with maize straw as a bulking agent. Journal of Ecological Engineering 16 (3), 108–114.
  • 11. De Gisi S., Todaro F., Fedele G., Carella C., Notarnicola M. 2018. Alternating pure oxygen and air cycles for the biostabilization of unsorted fraction of municipal solid waste. Waste Manage. 79, 404–414.
  • 12. den Boer E., Jędrczak A. 2017. Performance of mechanical biological treatment of residual municipal waste in Poland, in: Kaźmierczak, B., Kutyłowska, M., Piekarska, K., Jouhara H., Danielewicz A. (Eds.). International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17). E3S Web of Conferences 22, 00020.
  • 13. Dębicka M., Żygadło M., Latosińska J. 2017. The effectiveness of biodrying waste treatment in full scale reactor. Open Chem. 15, 67–74.
  • 14. Dziedzic K., Łapczyńska-Kordon B., Malinowski M., Niemiec M., Sikora J. 2015. Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimisation of waste deposited in landfills. Chem. Process Eng. 36 (4), 381–394.
  • 15. Grzelka A., Miller U., Sówka I. 2018. The role for biological methods in the municipals management odour nuisance reduction strategy. Ecol. Chem. Eng. A. 25 (1), 51–60.
  • 16. Grzesik K., Malinowski M. 2017. Life cycle Assessment of the mechanical – biological treatment of mixed municipal waste in Miki Recycling, Krakow, Poland. Environmental Engineering Science 34 (3), 207–220.
  • 17. Godlewska P., Schmidt H.P., Ok Y.S., Oleszczuk P. 2017. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 246, 193–202.
  • 18. Jakubowski T. 2019. Empirical model of thermophilic phase of composting process. In: KrakowiakBal, A., Vaverková, M.D. (Eds.), Infrastructure and Environment. Springer, Cham, pp. 129–135.
  • 19. Janczak D., Malińska K., Czekała W., Cáceres R., Lewicki A., Dach J. 2017. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manage. 66, 36–45.
  • 20. Jędrczak, A., 2008. Biologiczne przetwarzanie odpadów (Biological Waste Treatment). PWN, Warszawa. (in Polish).
  • 21. Jędrczak A., Suchowska-Kisielewicz M. 2018. A comparison of waste stability indices for mechanical-biological waste treatment and composting plant. Int. J. Environ. Res. Public Health. 15, 2585.
  • 22. Kasiński S., Slota M., Markowski M., Kamińska A. 2016. Municipal solid waste stabilization in a reactorwith an integrated active and passive aeration system. Waste Manage. 50, 31–38.
  • 23. Khan N., Clark I., Sánchez-Monedero M.A., Shea S., Meier S., Bolan N. 2014. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour. Technol. 168, 245–251.
  • 24. Knapczyk A., Francik S., Frączek J., Ślipek Z. 2019. Analysis of research trends in production of solid biofulels. Engineering for Rural Development. 18. 1503–1509.
  • 25. Lehmann J., Joseph S. 2015. Biochar for Environmental Management. Science, Technology and Implementation, second ed., p. 944. ISBN-13: 978–0415704151.
  • 26. Malinowski M. 2017. Analysis of the undersize fraction temperature changes during the biostabilization process. Infrastruct. Ecol. Rural Areas. IV (3), 1773–1784.
  • 27. Malinowski M.,Wolny-Koładka K., Vaverková M.D. 2019. Effect of biochar addition on the OFMSW composting process under real conditions. Waste Manage. 84, 364–372.
  • 28. Malinowski M., Famielec S., Wolny-Koładka K., Sikora J., Gliniak M., Baran D., Sobol Z., Salamon J. 2021. Impact of digestate addition on the biostabilization of undersized fraction from municipal solid waste. Science of The Total Environment. 770: 145375.
  • 29. Malińska K., Zabochnicka-Świątek M. 2013. Selection of bulking agents for composting of sewage sludge. Environ. Prot. Eng. 39 (2), 91–103.
  • 30. Maxianová A., Vaverková M.D. 2021. Optimization of a food waste composting process with a sawdust. International Journal od Sustainable Agricultural Management and Informatics. 6 (4), 319.
  • 31. Michel F., Recchia J., Rigot J., Keener H. 2004. Mass and nutrient loss during the composting of dairy manure amended with sawdust or straw. Compos. Sci. Utilization. 12, 332–334.
  • 32. Neugebauer M., Jakubowski T., Sołowiej P., Wesołowski M. 2018. A Fuzzy Model of the Composting Process with Simultaneous Heat Recovery and Aeration Rate Control. In: Mudryk K., Werle S. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham.
  • 33. Neugebauer M., Sołowiej P. 2017. The use of green waste to overcome the difficulty in small-scale composting of organic household waste. Journal of Cleaner Production 156, 865–875.
  • 34. Pawnuk M., Grzelka A., Miller U., Sówka I. 2020. Prevention and Reduction of Odour Nuisance in Waste Management in the context of the Current Legal and Technological Solutions. Journal of Ecological Engineering 21 (7), 34–41.
  • 35. Puyuelo B., Gea T., Sanchez A. 2014. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies. Chemosphere, 109, 64–70.
  • 36. Richard T.L., Hamelers H., Veeken A., Silva T., 2002. Moisture relationships inccomposting processes. Compost Sci. Util. 10 (4), 286–302.
  • 37. Scaglia B., Orzi V., Artola A., Font X., Sánchez A., Adani F. 2011. Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol. 102, 4638–4645.
  • 38. Soboniak E., Bień J.D. 2015. Proces mechaniczno-biologicznego przetwarzania zmieszanych odpadów komunalnych wedle nowych przepisów w instalacji Regionalnego Zakładu Zagospodarowania Odpadów w Sobuczynie. Inżynieria i Ochrona Środowiska 18 (4), 483–495.
  • 39. Stejskal B., Malsová A., Báreková A., 2017. Comparison of family house and apartment households bio-waste production and composition. Waste Forum 4, 237–243.
  • 40. Tom A., Pawels R., Haridas A. 2016. Biodrying process: a sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manage. 49, 64–71.
  • 41. Vaverková M.D., Elbl J., Voběrková S., Koda E., Adamcová D., Gusiatin Z.M., Rahman A.A., Radziemska M., Mazur Z. 2020. Composting versus mechanical–biological treatment: does it really make a difference in the final product parameters and maturity. Waste Manage. 106, 173–183.
  • 42. Velis C.A., Longhurst P.J., Drew G.H., Smith R., Pollard S.J.T. 2009. Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresour. Technol. 100, 2747–2761.
  • 43. Voytovych I., Malovanyy M., Zhuk V., Mukha O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of Water and Land Development 45, 185–189.
  • 44. Wei L., Shutao W., Jin Z., Tong X. 2014. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour. Technol. 154, 148–154.
  • 45. Wierzbińska M. 2021. The Application of Mineral Sorbents to remove Volatile Organic Compound from the Gases Emitted from the Composting Process. Journal of Ecological Engineering. 22 (2), 98–110.
  • 46. Wójcik A., Frączek J. 2017. The influence of the repose angle and porosity of granular plant materials on the angle of internal friction and cohesion. Tribologia 5, 117–123.
  • 47. Wolny-Koładka K., Malinowski M., Żukowski W. 2020. Impact of calcium oxide on hygienization and self-heating prevention of biologically contaminated polymer materials. Materials 13, 4012.
  • 48. Yuan J., Zhang D., Li Y., Chadwick D., Li G., Li Y., Du L. 2017. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manage. 62, 52–60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82e0b491-82a3-458c-95d8-010feb1355c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.