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Abstract. This paper considers the random evolution with Markov switching. The resulting
limited process is diffusion and depends on the small series parameter. The sufficient
conditions of dissipativity of the limited process were obtained. Since the conditions
of the Model Limit theorem and dissipativity conditions were set asymptotic dissipativity
of the output process.
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1. Introduction

One of the main problems in the theory of random processes is the establish-
ment of sufficient conditions for convergence to diffusion processes [1]. Random
evolution of continuous and discrete types is considered in [2]. In particular,
the solution of the singular perturbation problem is obtained for random processes
with Markov and semi-Markov switching. Markov and semi-Markov processes are
considered in the paper [3] for queuing systems with a single server and mainte-
nance time, depending on the length of the queue. Work [4] deals with a stochastic
process with Markov switching in the scheme of asymptotically small diffusion.

On the other hand, dissipativity as a property of the process is widely discussed
in the literature. The book [5] deals with dissipativity as deterministic as well as
random systems. Specifically, dissipativity of random systems with diffuse compo-
nent is investigated in [6]. The important point to establish the system dissipativity
conditions is the use of the Lyapunov function. In [7] the conditions of dissipativity
of impulsive systems are studied in terms of Lyapunov function defined for this
system. Asymptotic dissipativity of random evolution was previously received with
diffusion [8] and impulse perturbation in the diffusion approximation scheme.

In this paper the stochastic process is considered with diffusion perturbation in
the asymptotically small diffusion scheme. Asymptotic dissipativity derives from
dissipativity of the limited evolution and conditions of the Model Limit theorem.
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2. Problem formulation

Considering the stochastic system with diffusion perturbation which is defined
by stochastic differential equation [2]

N
N g”za(ug (t); x(?j) aw(t),

where u?(f),t>0 - random evolution, u € RY; C,(u;x) - singular perturbation of

(1)

the regression function C(u;x); w(t) - Wiener process; o(u,x) - diffusion.
Markov process x(z)>0 is defined in the dimensional space phase of states
(X,X) with stationary distribution 7(B),B € X.
The generator of the Markov process x(¢) is given by ratio

09(x) = q(X)jQ(x, dy)[P(y) = #(x)]. 2)

For generator @ potential R, is determined, which has the form

R, =M—-(I1+0)", where IT¢(x)= j 7(dx)@g(x) - projector on the subspace of

X
zeroes of operator Q: N, ={¢:0¢=0}.

Limited evolution of system (1) has representation
du(t) = C(u)dt + %gB(u)dw(t), 3)
where
C@=kmmmw) (4)
X
Limited diffusion o is determined from the ratio o(u)o" (1) = B(u), where
B(u)::joﬂ(u;x)ﬁ(dx) (5)
X
Let the condition of balance hold

jmaxummza (6)
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Operator L(x) takes the form

L(x) =[C(u) = C(u, )] (u) + {B(u) —%802 (u,X)}If”(u)-

3. Main result

Theorem. Let the Lyapunov function ¥ () e C*(R?) of system

du
—_— C 5
y ()

satisfies the conditions
CL:| G (u, )Ry [Co (u, )V ()] |< MV (u), M, > 0;
C2:] Ay (1, ) Ry [ L(u, )V w)]' |< M,V (u), M, > 0;
C3: Co(u, )Ry [Co (u, x)V ()] [< M3V (u), M > 0;
C4:| 4 (u,x)RO[]:(u,x)V’(u)]' <M,V (u),M,>0.

Under the condition of balance (6) and inequalities

Cw)V'(u)<-c¢V(u),c, >0,

sup ||0'(u)|| <c,,c, >0,

ueR

system (1) is asymptotic dissipative [2].
Proof of the theorem:
Lemma 1. Generator of two-component Markov process

X ) t
u(t),x; = x(—3],t >0
£
in Banach space B(R“,X) of real functions ¢(u,x) e C*°(R?, X) has form

L, x) = £ Q@(u,x) + £~ Co(x)(u, x) + 4 (x)(u, x),
where
A ()1, x) = C(u, ) (u, x) + %goz (u, )¢ (14, x)
and

Co(X)(u) = C, (u, x)¢'(u, x)

(7)

(8)
)

(10)

(11)

(12)
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Proof: The generator of two-component Markov process (10) on the test-function
#(u,x) is given by

L) = lim [ EI 1+ x5, [0 (0 = =21 - g 0] (13)

Let us compute the conditional expectation
E[p(u® (t + D), xi ) | u () =u,x; = x]=E, $u’ +Au®,x/ ).

The indicators of system time spent in the state x are determined from the
ratios

-3
16,> Ay = I Z1_ c540a+0(A),
-3
16, <67 A)=1-e 4OA _ 530 0A 1 o(a),
since the distribution function of the time spent in a state x has an exponential

distribution.
Hence,

E, @’ + Mt x0,0) = E, [$u+Au® x[ DING, > e D) +1(6, <6 7°A)] =
=E, [¢u+Au®,x)(6, > e N+ E, [pu+Au®,x/, )6, <e”A)]=
=E, [¢pu+ Au®,x)(1- 7 g(x)A+o(A))]+
+E, [+ Au’,x[, )7 q(x)A +o(A))] =
=E, [pu+Au’ ,x)] -7 q(x)E, [$(u+Au’ ,x)]A+
+e7q(0)E, [P+ du’ x5 )]A +o(A).

Consider the second term separately. From decomposition to Taylor series
obtain

£ q(0E, [¢(u+Mu® ,)|A =7 q(X)[E, ,pu,x)+ E, [4'(u,x)Au]]A+o(A).
From here

E, " +8u x[ ) = E, [$u+Mu” ,0)]+ & q(D)E, [P+ Au’,x/, ,)]A -
~£ q()[E, $p(u,2)] - & q(0)[E, ,[¢' (u, ) Au]]A +o(A).
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By the substitution received results in (13)

L00) = lim B, 9+ 0]+ q(xnlmiE“w(uMu x5 1A

- (I(X)hm [ P, x)]A - E_SQ(X)hm [ E, [¢'(u,x)Au]]A -
—d(u,x) + O(A) =
= EH})%E”’X [d(u+ Au®,x)]+ 573q(x)£in(1)Eu’x[¢(u +Au’,x; )] -

—8’3Q(x)£irr(1][Eu,x¢(u, x)]= 8’3Q(x)£in(1)[Eu,x[¢'(u, x)Au]] = P(u,x) + o(A).
From the Taylor series

e q(E, [¢(u+Au®,x, )] = £ q(0)E, [P(u,x,.,)] +
+e () E, [#'(u,x,.0)Aul +0(B).

Therefore,
L00) = lim B, 800+ 8 0] =g (0lim(E,  $G0,0)] -
~& () limE, ,[4/ (4. 0)Au]+ £~ g()limE, [H(u.x,.,)]+
+8’3q(X)£iL1%Eu,x[¢’(u,x,+A)Au] = P(u,x) +o(A).
Taking into account the representation of Markov process generator (2)
q(lim| £, 140051~ E, [$(u.2)] ] = lim@p(u.x) = 0p(u.).
Consequently,
L00) = lim E, [$00+ 80 0]+ 270w,
E’BQ(x)iiLl})Eu,x[cﬁ'(u, x)Au]+

+a‘3q(x)£in(1]Eu,x[¢’(u,x[+A)Au] — p(u,x) +0(A).

From system (1) get

uHA=u[+t]C( (s)x( Dds+8 []C( (s)x( Dds+
+gl/2pj-0( (S) (i}jde(S)
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Thus,

t+A t+A
U o —U = I (u (s); x( Dderg J.C (u (s); x( nder
f & g
+81/2[]‘ ( £(s); x( j]dw(s)

Substituting received result to second limit of expression for the generator

L p(u,x)
ilg(l] |:Eu,x[¢’(u’ Xira ) - ¢'(1/l, x)]Au:I =

= EH(l)Eu’X[¢'(Z/l,Xt+A)—¢'(M,x)] J. C( (S) ( ]]ds +
+e TimE, 190 0) — 4@, )] [¢ (u (s);x(%jj ds +
+e" imE, [¢'(u,x,,4) — ¢'(u,x)] j G(ug (S);x(i}j] dw(s)=0.
A—0 ' &

Considering the obtained results

L () - ggqo%Eu,xw(u § AU 0]+ €70, x) — P, x) + o(A).

z—u+t+fc(u (s); x[g jjds+5 ch (u (s); x(g nds

Replace

So,

A
EE%%EM’X[qﬁ(u +Au®,x)]= EE%%EM {¢(z + ! G[ (s); x( D daw(s), x):l

t+A

= EE%%E"’X {¢(z+ IG( “(s); x( de(s) d(z,x)+ P(z,x), x):l

t+A

=}\13%Eu,{¢(z+f 6[ () x( de(s) #(z, ), x):|+hrn E, [§(z,0)]

t
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Applying the Taylor series to the first term

E,. H“guz’] O—(uf(s); (13 jdw(s) x)ﬂ

=E, [¢(z,0)]+&E, [4'(z,x)]E, . {t] 5(” (s); x( de(s)}
t+A s
E, [¢"(z,0)]E, { _[ ( (5); (—Jj dw(s):l +o(A).

t

Hence,

1
lim = E, [p(u+Au,x)]=

A—0

+A 2
_%llg;l)igE ¢rr(z x) |: J.O'( (S) x( )de(S):l
Flim—E, [¢(z.0]+o(A).
A—0 A

Thus generator takes the form

t+A
L, x)——hm E, J¢"w+ | C(u (5); (%Ddﬁ

&

e w5 e folweo (%de(s)}l
| +E, [z, 0)]+ 67 Qp(u,x) — Pu,x)+0(A) =
=60 (X0 02) + 80P,V + E, [9(20) ~ $ 0] +0() =
= %502 (u, X)p" (1, X) + £ QP(u, x) +
+E,  [#u,x) +(Clu,x) + &7 Cy (1, )¢ (u, x) = $u, )] + 0(A) =
=&70Q¢(u,x) + C(u,x)¢'(u, x) + &' Cy (u, X)$' (u1, x) + %50‘2 (u, x)¢" (u, X).

Taking into account expression (12), generator (11) is obtained.
Lemma 2. Limited generator L on the perturbed test-function

¢ (u,x) = P(u) + &4, (u,x) + &’ (u,),¢(u) € C* (R") (14)
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determined by the solution of the singular perturbation problem
L g(u,x) = &' [Q@, (u,x) + Cop ()] +[Q; (4, x) + A, (X)p(u)] + £6° (x),
where residual term 6°(x) has representation
0% (x) = Co (%) (1, x) + £Co (x) s (u, x) +
+& 4, (X)¢, (14, %) + & A, (), (1, %),
Proof: Generator (11) on the perturbed test-function (14) has the form
L g(u,x) =7 0p(u) + &' 0, (u,x) + Oy (u,x) +
+&7'Cyp(u) + £Cyy (u, x) + &° Coy (1, x) +
+Apu)+ &> A, (u,x) + & Ay (u,x) =
=7 0p(u) +
+&™! [0¢, (u,x) + Cop(u)] +
+HOP, (u,x) + A p(u)] +
+e[Cop, (u, x) + £Coy (u, x) + £ AP, (u, ) + 52A1¢3 (u,x)].
Since Q € N,, then
O0p(u)=0.

Therefore,

L ¢(u,x) = £ [0, (u, x) + Cop(u)] +[Q (u, ) + A (x)p(u)] +
+&[Cody (u,x) + £Co s (u, x) + A9, (u, x) + 52A1¢3 (u,x)].

Given the appearance of residual term (16) get generator (15).

(15)

(16)

Lemma 3. The solution of singular perturbation problem for generator L° on

perturbed Lyapunov function
Ve (u,x) =V (u)+ &V, (u,x) + £V, (u,x),V (u) € C*(R)
has a representation

LV (u,x)=LV(u)+ &6 (x)V(u),
where limited generator L has form

LV (u)=Cu)V'(u)+ %5B(u)V”(u)

(17)

(18)

(19)
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and residual term 6] (x) is defined by the ratio

67 (x) = Co(x)RyCy (x) +£Co () Ry L(x) +

. (20)
+&A,(X)R,Cy(x) + & A, (x)R,L(x).

Proof: The generator (15) on the perturbed Lyapunov function (17) has
representation

LV (u,x) = &' [QV, (u,x) + CoV (u)] +[QV; (1, x) + A (x)V (u)] + £6° (x).
From the first condition of singular perturbation problem solvability

oV, (u,x)+CyV(u)=0,
oV, (u,x)=-CyV (u).

Applying the balance condition (6) gets
Vy(u,x)=R,C,V (u). (21)
Using the second condition of solvability
OV, (u,x)+ A (x)V(u)= LV (u),
here 4,(x) is given by (12).
OVi(u,x)=—A,(x)V(u)+ LV (u),
where
L=T114,(x). (22)
Denote by L(x) difference
L(x)=L— 4,(x).
Then
OV (u,x) = L(x)V (u),
Vy(u,x) = RyL(x)V (). (23)

That is generator (22), which has representation

LV (u)= V'(u)J.XC(u; x)7t(dx) + %81/”(1/{)'[)(0'2 (u; x) 7 (dx).
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By the substitution ratios (21) and (23) in residual term (16)
67 (x) = Co(x) Ry Co (%) + £C (X) Ry L(x) + £ 4, (x) R,Cy (x) + £° 4, (x) Ry L ().

Thus, taking into account expressions (4) and (5), generator (18) is obtained
with limited generator (19) and residual term (20).

From the conditions C1-C4 of the theorem boundary on the residual term is
of the form (20)

0 (X)g(u,w)| < MV (u). (24)

From Lemma 3 and expression (24) the conditions of the Model Limit theorem
take place ([2], p. 64)

(uf(t),ff(t)) — (4(0),6W (1)), & 0.
Lyapunov function V' (u) satisfies the Lipschitz condition

|V(u2)—V(u1)|<K|u2 Y l

where K - const.
Then the relation below is performed

dVV (u) _dV(w)
du  du

+K o) dw @),

where (d"V(u)/du) and (dV(u)/du) - derivatives of the Lyapunov function

calculated along the trajectory of the systems (3) and (7), respectively.
Applying expressions (8) and (9) ([5], p. 23), have

1)
4 Vw <—cV(u)+Ke, |dW(1)|.
du
t t t
Therefore, V(1) < V(uo)exp{jo— c,ds}+ j ,oxpl j —cdp}Ke, | dW (s)|ds.

Thus, V() <V () expi—cit} + K, | 0 expi—c,(t — )} | dW (s)|ds.

Finding the expectation of both parts inequality obtained

EV(u) <V (u, )exp_clt +Kc, J.(jexp_c1 (t_S)E] dW (s)|ds.
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Consequently, estimates are of the form ([5], p. 23)

EV(u)
Pilu(t) > Ry < TS

uekR

R—0.

So, system (3) is dissipative. Herefrom and from the Modal Limit theorem
follows that system (1) is asymptotic dissipative.

4. Conclusions

This result makes it possible to build a functional of action in the problem
of large deviations with small diffusion for asymptotic dissipative stochastic
evolutions. In the paper the asymptotic dissipativity of random evolution with
Markov switching in the asymptotic small diffusion scheme is obtained. Balance
condition on the singular perturbation of regression function is crucial for estab-
lishing convergence of the initial process to the limited evolution.
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