PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local Ionospheric Modeling Using the Localized Global Ionospheric Map and Terrestrial GPS

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global ionosphere maps are generated on a daily basis at CODE using data from about 200 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content is modeled in a solargeomagnetic reference frame using a spherical harmonics expansion up to degree and order 15. The spherical Slepian basis is a set of bandlimited functions which have the majority of their energy concentrated by optimization inside an arbitrarily defined region, yet remain orthogonal within the spatial region of interest. Hence, they are suitable for decomposing the spherical harmonic models into the portions that have significant strength only in the selected areas. In this study, the converted spherical harmonics to the Slepian bases were updated by the terrestrial GPS observations by use of the least-squares estimation with weighted parameters for local ionospheric modeling. Validations show that the approach adopted in this study is highly capable of yielding reliable results.
Czasopismo
Rocznik
Strony
237--252
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Research Institute of Geoinformation Technology (RIGT), College of Engineering, University of Tehran, Tehran, Iran
autor
  • School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Bibliografia
  • Alizadeh, M.M., H. Schuh, S. Todorova, and M. Schmidt (2011), Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data, J. Geodesy 85, 12, 975-987, DOI: 10.1007/s00190-011-0449-z.
  • Angrisano, A., S. Gaglione, C. Gioia, M. Massaro, and S. Troisi (2013), Benefit of the NeQuick Galileo version in GNSS single-point positioning, Int. J. Nav. Observ. 2013, 302947, DOI: 10.1155/2013/302947.
  • Beggan, C.D., J. Saarimāki, K.A. Whaler, and F.J. Simons (2013), Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int. 193, 1, 136-148, DOI: 10.1093/gji/ ggs122.
  • Bilitza, D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The international reference ionosphere today and in the future, J. Geodesy 85, 12, 909- 920, DOI: 10.1007/s00190-010-0427-x.
  • Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S.M. Radicella (2007), Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geodesy 81, 2, 111-120, DOI: 10.1007/s00190-006- 0093-1.
  • Coster, A.J., E.M. Gaposchkin, and L.E. Thornton (1992), Real-time ionospheric monitoring system using GPS, Navigation 39, 2, 191-204, DOI: 10.1002/ j.2161-4296.1992.tb01874.x.
  • El-Arini, M.B., P.A. O’Donnell, P.M. Kellam, J.A. Klobachar, T.C. Wisser, and P.H. Doherty (1993), The FAA Wide Area Differential GPS (WADGPS) static ionospheric experiment. In: Proc. National Technical Meeting, Institute of Navigation, 20-22 January 1993, San Francisco, USA, 485-496.
  • El-Arini, M.B., C.J. Hegarty, J.P. Fernow, and J.A. Klobuchar (1994a), Development of an error budget for a GPS Wide-Area Augmentation System (WAAS). In: Proc. National Technical Meeting, Institute of Navigation, 24-26 January 1994, San Diego, USA, 927-936.
  • El-Arini, M.B., R.S. Conker, T.W. Albertson, J.K. Reagan, J.A. Klobuchar, and P.H. Doherty (1994b), Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS), Navigation 41, 4, 393- 414, DOI: 10.1002/j.2161-4296.1994.tb01887.x.
  • Gao, Y., P. Heroux, and J. Kouba (1994), Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Proc. KIS-94, 30 August – 2 September 1994, Banff, Canada, 109-117.
  • García-Fernández, M. (2004), Contributions to the 3D ionospheric sounding with GPS data, Ph.D. Thesis, Technical University of Catalonia, Barcelonna, Spain.
  • García-Fernández, M., M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orús, P. Coisson, B. Nava, and S.M. Radicella (2003), Combining ionosonde with ground GPS data for electron density estimation, J. Atmos. Sol.-Terr. Phys. 65, 6, 683-691, DOI: 10.1016/S1364-6826(03)00085-3.
  • Horn, R.A., and C.R. Johnson (1991), Topics in Matrix Analysis, Cambridge University Press, Cambridge.
  • Komjathy, A. (1997), Global ionospheric total electron content mapping using the Global Positioning System, Ph.D. Thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.
  • Liao, X., and Y. Gao (2001), High-precision ionospheric TEC recovery using a regional-area GPS network, Navigation 48, 2, 101-111, DOI: 10.1002/j.2161- 4296.2001.tb00232.x.
  • Liu, J., Z. Wang, H. Zhang, and W. Zhu (2008), Comparison and consistency research of regional ionospheric TEC models based on GPS measurements, Geomat. Inf. Sci. Wuhan Univ. 33, 5, 479-483.
  • Liu, J., R. Chen, H. Kuusniemi, Z. Wang, H. Zhang, and J. Yang (2010), A preliminary study on mapping the regional ionospheric TEC using a spherical cap harmonic model in high latitudes and the Arctic Region, J. Glob. Pos. Syst. 9, 1, 22-32, DOI: 10.5081/jgps.9.1.22.
  • Liu, J., R. Chen, Z. Wang, and H. Zhang (2011), Spherical cap harmonic model for mapping and predicting regional TEC, GPS Solut. 15, 2, 109-119, DOI: 10.1007/s10291-010-0174-8.
  • Liu, J., R. Chen, J. An, Z. Wang, and J. Hyyppa (2014), Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle, J. Geophys. Res. 119, 1, 601-619, DOI: 10.1002/2013JA019501.
  • Mautz, R., J. Ping, K. Heki, B. Schaffrin, C. Shum, and L. Potts (2005), Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets, J. Geodesy 78, 11-12, 660-667, DOI: 10.1007/ s00190-004-0432-z.
  • Mikhail, E.M., and F.E. Ackermann (1976), Observations and Least Squares, IEP Series in Civil Engineering, Dun-Donnelley, New York, 497 pp.
  • Nohutcu, M., M.O. Karslioglu, and M. Schmidt (2010), B-spline modeling of VTEC over Turkey using GPS observations, J. Atmos. Sol.-Terr. Phys. 72, 7-8, 617-624, DOI: 10.1016/j.jastp.2010.02.022.
  • Percival, D.B., and A.T. Walden (1993), Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge Univ. Press, Cambridge.
  • Radicella, S.M., B. Nava, and P. Coïsson (2008), Ionospheric models for GNSS single frequency range delay corrections, Fís. Tierra 20, 27-39.
  • Schaer, S. (1997), How to use CODE’s Global Ionosphere Maps, Astronomical Institute, University of Berne, Switzerland, http://www.aiub.unibe.ch.
  • Schaer, S. (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Berne, Switzerland.
  • Schaer, S., G. Beutler, L. Mervart, M. Rothacher, and U. Wild (1995), Global and regional ionosphere models using the GPS double difference phase observable. In: G. Gendt and G. Dick (eds.), Proc. IGS Workshop on Special Topics and New Directions, 15-18 May 1995, GFZ, Potsdam, Germany, 77-92.
  • Schaer, S., G. Beutler, M. Rothacher, and T.A. Springer (1996), Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. In: R.E. Neilan et al. (eds.), Proc. IGS Analysis Center Workshop, Silver Spring, USA, 19-21 March 1996, 181-192.
  • Schmidt, M. (2007), Wavelet modelling in support of IRI, Adv. Space Res. 39, 5, 932-940, DOI: 10.1016/j.asr.2006.09.030.
  • Schmidt, M., D. Bilitza, C.K. Shum, and C. Zeilhofer (2008), Regional 4-D modeling of the ionospheric electron density, Adv. Space Res. 42, 4, 782-790, DOI: 10.1016/j.asr.2007.02.050.
  • Schunk, R.W., L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, M. Codrescu, C. Minter, T.J. Fuller-Rowell, R.A. Heelis, M. Hairston, and B.M. Howe (2004), Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci. 39, RS1S02, DOI: 10.1029/2002RS002794.
  • Sharifi, M.A., and S. Farzaneh (2014), The spatio-spectral localization approach to modelling VTEC over the western part of the USA using GPS observations, Adv. Space Res. 54, 6, 908-916, DOI: 10.1016/j.asr.2014.05.005.
  • Simons, F.J. (2010), Slepian functions and their use in signal estimation and spectral analysis. In: W. Freeden, M.Z. Nashed, and T. Sonar (eds.), Handbook of Geomathematics, Springer, Berlin Heidelberg, 891-923, DOI: 10.1007/978- 3-642-01546-5_30.
  • Simons, F.J., F.A. Dahlen, and M.A. Wieczorek (2006), Spatiospectral concentration on a sphere, SIAM Rev. 48, 3, 504-536, DOI: 10.1137/ S0036144504445765.
  • Simons, M., S.C. Solomon, and B.H. Hager (1997), Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus, Geophys. J. Int. 131, 1, 24-44, DOI: 10.1111/j.1365-246X.1997.tb00593.x.
  • Skone, S.H. (1998), Wide area ionosphere grid modelling in the auroral region, Ph.D. Thesis, UCGE Report No. 20123, University of Calgary, Calgary, Canada.
  • Slepian, D. (1983), Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25, 3, 379-393, DOI: 10.1137/1025078.
  • Stolle, C., S. Schlüter, Ch. Jacobi, and N. Jakowski (2003), 3-dimensional ionospheric electron density reconstruction based on GPS measurements, Adv. Space Res. 31, 8, 1965-1970, DOI: 10.1016/S0273-1177(03)00168-6.
  • Tegmark, M. (1997), How to measure CMB power spectra without losing information, Phys. Rev. D 55, 10, 5895-5907, DOI: 10.1103/PhysRevD.55.5895.
  • Wieczorek, M.A., and F.J. Simons (2005), Localized spectral analysis on the sphere, Geophys. J. Int. 162, 3, 655-675, DOI: 10.1111/j.1365-246X.2005.02687.x.
  • Wielgosz, P., D. Grejner-Brzezinska, and I. Kashani (2003), Regional ionosphere mapping with kriging and multiquadratic methods, J. GPS 2, 1, 48-55, DOI: 10.5081/jgps.2.1.48.
  • Wu, Y., S.G. Jin, Z.M. Wang, and J.B. Liu (2010), Cycle slip detection using multifrequency GPS carrier phase observations: A simulation study, Adv. Space Res. 46, 2, 144-149, DOI: 10.1016/j.asr.2009.11.007.
  • Zeilhofer, C. (2008), Multi-dimensional B-spline modeling of spatio-temporal ionospheric signals, Deutsche Geodätische Kommission, Bayerischen Akademie der Wissenschaften, München, Germany.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82dd3c26-76cf-4473-a52a-cc4fa0637868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.