PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behavior of copper and lead during mineralurgical and hydrometallurgical processing of flash smelting slag

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are only a few smelters processing copper concentrates directly into blister copper. Despite the many advantages of this process, a serious challenge of this technology is the need to process the resulting flash smelting slag. It contains 12–15% copper and 2.5–4% lead. In this form, it cannot be considered as waste material and, therefore, a high-temperature reduction process is carried out. This decopperization process is energy- and time-consuming. The use of mineralurgical and hydrometallurgical processes, selective enrichment of the appropriate slag fractions in copper and lead, followed by its hydrometallurgical processing and recovery of Cu and Pb could be an interesting supplement to the methods used so far. The article presents results of research on the possibility of separation of useful components from copper slag using the original method of sieve analysis, gravitational enrichment and magnetic separation. Preliminary results of tests were made on a laboratory scale. Then, selective leaching of copper and lead from flash smelting slag was carried out, obtaining very promising results.
Rocznik
Strony
435--447
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Department of Fundamental Researches in Energy Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineering, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Gostyński Z, Haze D. Flash smelting furnace of the KGHM Glogow copper plant - technological and process challenges as a driving force of its continuous modernization. In: Warmer AEM, Newman CJ, Vahed A, George DG, Mackey PJ, Warczok A, editors, Copper/cobre 2007, vol. III, Book 2: the carlos diaz symposium of pyrometallurgy. 2007. pp. 233–243.
  • [2] Taskinen P, Kojo I. Fluxing options in the direct-to-blister copper smelting. In: Proceedings of molten 2009 international conference. 2009. pp. 1139–1151.
  • [3] Piestrzyński A, Zaleska-Kuśmierczyk M (2007) Monograph of KGHM Polska Miedź SA, 2 Eds., Wrocław: KGHM Cuprum Lubin.
  • [4] Kucharski M, Sak T, Madej P, Wędrychowicz M. A study on the copper recovery from the slag of the outokumpu direct-to-copper process. Metall Mater Trans B. 2014;45:590–602.
  • [5] Czernecki J, Śmieszek Z, Miczkowski Z, et al. The slag cleaning technologies for one-stage flash smelting of KGHM Polska Miedz concentrates. In: Kongoli F, Reddy RG, editors. Sohn international symposium, vol. 8, International symposium on sulfide smelting. 2006. pp. 181–197.
  • [6] Śmieszek Z, Czernecki J, Sak T, Madej P. Metallurgy of non-ferrous metals in Poland. J Chem Technol Metall. 2017;52:221–34.
  • [7] Byszyński L, Garycki L, Gostyński Z, Stodulski T, Urbanowski J. Present and future modernization of metallurgical production lines of the Glogow copper smelter. In: Proceedings of copper 2010, vol. 2, Pyrometallurgy I. 2010. pp. 631–647.
  • [8] Mineralogy Database. http://webmineral.com. Accessed 12 Dec 2019.
  • [9] Gupta A, Yan DS. Mineral processing design and operation: an introduction. Amsterdam: Elsevier; 2006.
  • [10] Svoboda J, Fujita T. Recent developments in magnetic methods of material separation. Miner Eng. 2003;16:785–92.
  • [11] Oberteuffer J. Magnetic separation: a review of principles, devices, and applications. IEEE Trans Magn. 1974;10:223–38.
  • [12] Drzymała J. Podstawy mineralurgii (basics of mineralurgy). 2nd ed. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2009.
  • [13] Sonmez MS, Kumar RV. Leaching of waste battery paste components. Part 1: lead citrate synthesis from PbO and PbO2. Hydro-metallurgy. 2009;95:53–60.
  • [14] Gargul K, Boryczko B, Bukowska A. Hydrometallurgical recovery of lead from direct-to-blister copper flash smelting slag. Arch Civ Mech Eng. 2017;17:905–11.
  • [15] Gargul K, Boryczko B, Bukowska A, Jarosz P, Małecki S. Leaching of lead and copper from flash smelting slag by citric acid. Arch Civ Mech Eng. 2019;19:648–56.
  • [16] Gargul K, Bukowska A. Leaching of direct-to-blister copper flash smelting slag with sodium hydroxide solutions. Przem Chem. 2017;96:2464–6.
  • [17] Buzatu T, Ghica VG. Solubilization kinetics of lead hydroxide obtained from sulfated-oxide waste from lead-acid battery in acetic acid in the presence of urea. Rev Chim. 2013;64:170–3.
  • [18] Sonmez MS, Kumar RV. Leaching of waste battery paste components Part 2: leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution. Hydrometallurgy. 2009;95:82–6.
  • [19] The National Centre for Research and Development. https://www.ncbr.gov.pl/fileadmin/user_upload/import/tt_content/files/zalacznik_nr_1_do_regulaminu_zakres_merytoryczny.pdf. Accessed 12 Sept 2020.
  • [20] Decision of the Marshal of the Lower Silesian Voivodeship no PZ 83.13/2017 of July 12, 2017, sign: DOWS-IV.7222.0.2017.LS. https://bip.dolnyslask.pl/urzad/Article/get/id,110836.html. Accessed 15 Sept 2020.
  • [21] Siwiec G, Sozańska M, Blacha L, Smalcerz A. Behaviour of iron during reduction of slag obtained from copper flash smelting. Metalurgija. 2015;54:113–5.
  • [22] Kucharski M, Rogóż K. Method for decoppering waste slag, especially after flash furnace process of obtaining copper. Patent nr. 213767. 2009.
  • [23] Coursol P, Mackey PJ, Díaz CM. Energy consumption in copper sulphide smelting. In: Proceedings of copper 2010, vol. 2, Pyro-metallurgy I (Clausthal-Zellerfeld: GDMB, 2010), pp. 649–668.
  • [24] Li Y, Guan J. Life cycle assessment of recycling copper process from copper-slag. In: 2009 International conference on energy and environment technology, ICEET. pp 198–201.
  • [25] Mateuszuk S. Selected issues of materials milling in vertical roller-mills. Sci Works Inst Ceram Build Mater. 2012;9:113–24.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82d90b27-8aad-491a-aca8-a21330c0effd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.