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Abstract  

In this paper the single-rod cantilever column subjected to compressive Euler's load is investigated. The 
boundary problem has been formulated on the basis of Hamilton's principle and Timoshenko's theory. Numeri-
cal simulations of characteristic curves have been plotted on the plane external load-vibration frequency for 
different magnitudes of slenderness factor of the system. The results of numerical calculations of Timoshenko's 
beam are compared to the ones obtained from mathematical Bernoulli-Euler's model. The comparison of the 
results of characteristic curves calculated by means of Timoshenko's theory and Bernoulli-Euler's model are 
done for first three vibration frequencies. 
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1. Introduction 

The results of numerical calculations of supporting systems subjected to external loads 
of various types are often presented in the form of characteristic curves (see [5-8]). By 
means of these curves the relation between vibration frequency and external load which 
changes from zero up to the critical load can be observed. In the case when the system is 
subjected to a non-conservative load (it is destroyed by the vibrations of increasing am-
plitude - flutter type of instability) the critical force can be only determined on the basis 
of the characteristic curves (kinetic stability criterion) (see [5, 7, 8]). The supporting 
systems (columns) are generally characterized by great slenderness factor. For systems 
with great slenderness in order to formulate the boundary problem it is sufficient to ap-
ply the theory of Bernoulli - Euler. With the decrease of slenderness factor magnitude 
the noticeable effect of shear potential energy and cross-section rotational kinetic energy 
on the characteristic curves can be observed (see [1-4]). An influence of these two com-
ponents is taken into account in the theory of Timoshenko's beam. 

The study on the influence of non-dilatational strain and rotational inertia on the crit-
ical flutter loading have been performed by Kounadis and Katsikadelis (comp. [3]). They 
have studied the different types of supports and column shapes by means of variable 
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slenderness magnitude of the considered system. Stability of columns subjected to the 
follower force with consideration of Timoshenko's theory has been presented by Nemat-
Nasser in [4]. It has been concluded that, at lower magnitudes of slenderness factor asso-
ciated with shear force and rotational inertia of the cross-section a significant effect of 
these parameters on the critical load can be observed (destabilizing effect). In considera-
tions of Namat-Nasser the material of the rod was Kelvin's type. 

In the paper [1] Glabisz solved the vibrations problem of the column with considera-
tion of Timoshenko's theory. The areas of instability of the cantilever column loaded by 
independently of one another conservative and non-conservative force have been pre-
sented. 

The main purpose of this paper is to study an influence of non-dilatational strain 
(shear effect) and rotational inertia of cross-section on characteristic curves (curves plot-
ted on the plane external load - vibration frequency). 

2. Boundary problem formulation on the basis of Hamilton's principle 

The investigated system has been presented in the figure 1. The cantilever column is 
subjected to compressive load (force P) with constant line of action (Euler's load). The 
investigated system is considered as a single-rod column. 
 

 

Figure 1. Considered column subjected to Euler’s load 

In this paper the boundary problem of natural vibrations has been formulated on the 
basis of Hamilton's principle: 
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The kinetic energy of the column is expressed as follows: 
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The potential energy is equal to potential energy of bending and shear and compression 
caused by external load:  
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where: W(x,t) – deflection of the section, Ψ(x,t) – rotation angle of the section, E –
Young modulus, G – Kirchhoff modulus, A – cross-section area, J – axial geometrical 
moment of inertia of the column's section, κ - the shear coefficient which depends on 
section's shape (for circular cross-section  κ = 0.91), ρ - density of the material. 

Introducing the kinetic and potential energies (2 and 3) into Hamilton's principle al-
lows one to obtain the two differential equations: 
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Performing mathematical operation and seperating space and time variables W(x,t) = 
(Y(x)cos(ωt); Ψ(x,t) = ψ(x)cos(ωt) (where: ω − natural vibration frequency) leads to 
differential equations in the form:  

 ( ) ( ) ( ) 0=Φ−Γ+ ξξξ yyy IIIV  (6) 
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where: 
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The non-dimensional parameters ξ, y(ξ), λ, Θ, φ  and Ω are expressed as follows: 
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The introduction of geometrical boundary conditions into Hamilton's principle  

 ( ) ( ) 000 ==ψy  (11a,b) 

allows one to obtain the natural ones: 
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2. Solution of the boundary problem 

The solution of differential equations (6) and (7) depends on relation between Γ and Φ. 
The three different types of solutions are presented in the form: 

• solution A - if (Γ > 0 and Γ/2 < (Γ 2/4+Φ)0.5) or (Γ < 0 and (Γ/2 + (Γ 2/4+Φ)0.5) > 
0):  

 ( ) ( ) ( ) ( ) ( )ξβξβξαξαξ AAAAAAAA BBBBy sincossinhcosh 4321 +++=  (13) 

 ( ) ( ) ( ) ( ) ( )ξβξβξαξαξψ AAAAAAAA CCCC sincossinhcosh 4321 +++=  (14) 

where: 
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• solution B - if (Γ > 0 and Γ/2 > (Γ 2/4+Φ)0.5):   

 ( ) ( ) ( ) ( ) ( )ξβξβξβξβξ 24231211 sincossincos BBBBBBBB BBBBy +++=  (16) 
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where: 
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• solution C - if (Γ < 0 and (Γ/2 + (Γ 2/4+Φ)0.5) < 0):  

 ( ) ( ) ( ) ( ) ( )ξαξαξαξαξ 24231211 sinhcoshsinhcosh CCCCCCCC BBBBy +++=  (19) 

 ( ) ( ) ( ) ( ) ( )ξαξαξαξαξψ 24231211 sinhcoshsinhcosh CCCCCCCC CCCC +++=  (20) 

where: 

 Φ+
Γ

−
Γ

−=
42

2

1Cα , Φ+
Γ

+
Γ

−=
42

2

2Cα  (21a,b) 



 Vibrations in Physical Systems Vol.26 (2014) 323 

The constants of integration of solutions ψ(ξ) depend on constants of integration of solu-
tions y(ξ). Constants of integration CAi, CBi, CCi are expressed as follows: 

• solution A: 
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• solution B: 
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• solution C: 
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Introducing solutions y(ξ) and ψ(ξ) into boundary conditions one obtains: 

 [ ] { } 0,,, 4321 =iiiiij BBBBcola , i ≡ A or B or C (25) 

The determinant of the matrix of coefficients equated to zero is a equation from which 
the natural vibration frequency can be computed for given system's parameters:  

 0=ija  (26) 

3. Results of numerical calculations 

In the Figures 2-4 the change of Λωi parameter have been presented (where i stands for 
natural vibration frequencies, i = 1, 2, 3) in relation to external load of the system λ. By 
means of Λωi parameter the comparison of natural vibration frequencies computed on the 
basis of Bernoulli - Euler's model ωB-E and Timoshenko's theory ωT are presented. The 
Λωi parameter is expressed as follows: 
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The investigated system with circular cross-section is made of duraluminium. The nu-
merical calculations were performed for different slenderness parameter λS magnitude 
(λS = 300, 250, 200, 150, 100, 50). The slenderness parameter λS is expressed as follows: 
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where: buckling factor for investigated system is µb = 2. 
 

 

Figure 2. External load parameter λ in relation to parameter of free vibration 
frequency Λω1  

 

 
Figure 3. External load parameter λ in relation to parameter of free vibration 

frequency Λω2 



 Vibrations in Physical Systems Vol.26 (2014) 325 

On the basis of the performed numerical simulations it can be concluded that the 
greatest change in Λω  parameter in relation to external load λ appears for first natural 
vibration frequency. In this case an increase of external load magnitude results in in-
crease of difference in magnitudes of natural vibration frequencies calculated with Ber-
noulli - Euler's model and Timoshenko's theory. The slenderness factor has also an influ-
ence on Λω parameter. While taking into account second and third natural vibration fre-
quencies the change in Λω parameter is inconsiderable with the increasing magnitude of 
external load. 

At smaller magnitudes of external load the slenderness factor has greater influence 
on difference between frequencies (second and third) computed with Bernoulli - Euler's 
model and Timoshenko's theory.  

 

 

Figure 4. External load parameter λ in relation to parameter of free vibration frequency 
Λω3 

At the greatest slenderness λS = 300 and external force λ = 0 parameters Λωi are as 
follows: Λω1 ≈ 0.04%, Λω2 ≈ 0.27%, Λω3 ≈ 0.67%. While λS = 50 (the lowest considered 
slenderness) and external force λ = 0 parameters Λωi are:Λω1 ≈ 1.4%, Λω2 ≈ 9.4%,  
Λω3 ≈ 18%. 

4. Conclusion 

In this paper column subjected to a compressive Euler's load has been investigated. 
Comparison of results of numerical calculations of natural vibration frequencies obtained 
on the basis of two theories: Bernoulli - Euler (ωB-E) and the Timoshenko (ωT) have been 
performed. In order to demonstrate the differences in the frequencies of vibrations ωB-E 
and ωT the new parameter has been defined on the basis of which the percentage change 
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in the first three natural frequencies can be presented for different magnitudes of the 
external load. The calculations are also concern on different values of slenderness pa-
rameter. The greatest differences in the two mathematical models (Euler - Bernoulli and 
Timoshenko) occurs at the third vibration frequency. The differences between the theo-
ries of Bernoulli - Euler and Timoshenko are increasing with greater magnitude of exter-
nal load. In the case of the first characteristic curve corresponding to the first vibration 
frequency the differences are the greatest. For the second and third curves the change in 
magnitude of external load results in small difference between ωB-E and ωT frequencies. 
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