PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using ground motion prediction equations to monitor variations in quality factor due to induced seismicity: a feasibility study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sub-surface operations for energy production such as gas storage, fuid reinjection or hydraulic fracking may modify the physical properties of the rocks, in particular the seismic velocity and the anelastic attenuation. The aim of the present study is to investigate, through a synthetic test, the possibility of using empirical ground-motion prediction equations (GMPEs) to observe the variations in the reservoir. In the synthetic test, we reproduce the expected seismic activity (in terms of rate, focal mechanisms, stress drop and the b value of the Gutenberg-Richter) and the variation of medium properties in terms of the quality factor Q induced by a fuid injection experiment. In practice, peak-ground velocity data of the simulated earthquakes during the feld operations are used to update the coefcients of a reference GMPE in order to test whether the coefcients are able to capture the medium properties variation. The results of the test show that the coefcients of the GMPE vary during the simulated feld operations revealing their sensitivity to the variation of the anelastic attenuation. The proposed approach is suggested as a promising tool that, if confrmed by real data analysis, could be used for monitoring and interpreting induced seismicity in addition to more conventional techniques.
Czasopismo
Rocznik
Strony
723--735
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Istituto Nazionale di Geofsica e Vulcanologia, Via Diocleziano 328, 80124 Naples, Osservatorio Vesuviano, Italy
  • Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100 Benevento, Italy
  • Dipartimento di Fisica “E. R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
  • Dipartimento di Fisica “E. R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
Bibliografia
  • 1. Abercrombie RE (1998) A summary of attenuation measurements from borehole recordings of earthquakes: the 10Hz transition problem. Pure Appl Geophys 153:475–487
  • 2. Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44(5):739–757
  • 3. Allmann BP, Shearer PM (2009) Global variations of stress drop for moderate to large earthquakes. J Geophys Res 114:B01310. https://doi.org/10.1029/2008JB005821
  • 4. Atkinson GM, Morrison M (2009) Observations on regional variability in ground-motion amplitudes for small-to-moderate earthquakes in North America. Bull Seismol Soc Am 99:2393–2409
  • 5. Babaie Mahani A, Atkinson GM (2012) Evaluation of functional forms for the attenuation of small-to-moderate earthquake response spectral amplitudes in North America. Bull Seismol Soc Am 102:2714–2726
  • 6. Bachmann CE, Wiemer S, Goertz-Allmann BP, Woessner J (2012) Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys Res Lett 39:L09302. https://doi.org/10.1029/2012GL051480
  • 7. Baltay AS, Hanks TC, Beroza GC (2013) Stable stress-drop measurements and their Variability: Implications for Ground-Motion Prediction. Bull Seismol Soc Am 103:211–222
  • 8. Baltay AS, Hanks TC (2014) Understanding the magnitude dependence of PGA and PGV in NGA-West2 Data. Bull Seis Soc Am 104:6. https://doi.org/10.1785/0120130283
  • 9. Beauce A, Fabriol H, Le Masne D, Cavoit C, Mechler P, Chen XK (1992) Seismic studies on the HDR site of Soultz-sous-Forets (Alsace, France). In: Bresee JC (ed) Geothermal energy in Europe: the Soultz Hot Dry Rock project. Routledge, London
  • 10. Belyadi H, Fathi E, Belyadi F (2019) Chapter Fifteen—Numerical simulation of hydraulic fracturing propagation. In: Hydraulic fracturing in unconventional reservoirs. Theories, operations, and economic analysis (2nd Edn), Elsevier, Amsterdam, pp 257–272
  • 11. Bethmann F, Deichmann N, Mai PM (2012) Seismic wave attenuation from borehole and surface records in the top 2.5 km beneath the city of Basel, Switzerland. Geophys J Int 190:1257–1270. https://doi.org/10.1111/j.1365-246X.2012.05555.x
  • 12. Bommer JJ, Stafford PJ, Alarcón JE, Akkar S (2007) The influence of magnitude range on empirical ground-motion prediction. Bull Seismol Soc Am 97:2152–2170. https://doi.org/10.1785/0120070081
  • 13. Brune J (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009
  • 14. Calò M, Dorbath C (2013) Different behaviours of the seismic velocity field at Soultz-sous Forêts revealed by 4D seismic tomography: case study of GPK3 and GPK2 injection tests. Geophys J Int 194(2):1119–1137. https://doi.org/10.1093/gji/ggt153
  • 15. Chiou B, Youngs RR (2008) An NGA model for the average horizontal component of peak ground-motion and response spectra. Earthq Spectra 24:173–216
  • 16. Charléty J, Cuenot N, Dorbath L, Dorbath C, Haessler H, Frogneux M (2007) Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts. Int J Rock Mech Min Sci 44(8):1091–1105
  • 17. Convertito V, De Matteis R, Cantore L, Zollo A, Iannaccone G, Caccavale M (2010) Rapid estimation of ground-shaking maps for seismic emergency management in the Campania Region of southern Italy. Nat Hazards 52(1):97. https://doi.org/10.1007/s11069-009-9359-2
  • 18. Convertito V, Maercklin N, Sharma N, Zollo A (2012) From induced seismicity to direct time-dependent Seismic Hazard. Bull Seismol Soc Am 102(6):2563–2573. https://doi.org/10.1785/0120120036
  • 19. Cotton F, Coutant O (1997) Dynamic stress variations due to shear faults in a plane-layered medium. Geophys J Int 128(3):676–688. https://doi.org/10.1111/j.1365-246X.1997.tb05328.x
  • 20. Cotton F, Pousse G, Bonilla F, Scherbaum F (2008) On the discrepancy of recent European ground motion observations and predictions from empirical models: analysis of KiK-net accelerometric data and point-sources stochastic simulations. Bull Seismol Soc Am 98(5):2244–2261
  • 21. Cuenot N, Dorbath C, Dorbath L (2008) Analysis of the microseismicity induced by fluid injections at the Hot Dry Rock site of Soultz-sous-Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties. Pure Appl Geophys 165:797–828
  • 22. Del Pezzo E, Bianco F (2013) A reappraisal of seismic Q evaluated in Campi Flegrei caldera. Receipt for the application to risk analysis. J Seismol 17:829–837. https://doi.org/10.1007/s10950-012-9349-9
  • 23. De Matteis R, Convertito V (2015) Near-real time ground-motion updating for earthquake shaking prediction. Bull Seismol Soc Am 105(1):400–408. https://doi.org/10.1785/0120140145
  • 24. Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61:43–104. https://doi.org/10.1016/S0012-8252(02)00112-5
  • 25. Douglas J, Edwards B, Convertito V, Sharma N, Tramelli A, Kraaijpoel D, Cabrera BM, Maercklin N, Troise C (2013) Predicting Ground Motion from Induced Earthquakes in Geothermal Areas. Bull Seismol Soc Am. https://doi.org/10.1785/0120120197
  • 26. Emolo A, Convertito V, Cantore L (2011) Ground-motion predictive equations for low-magnitude earthquakes in the Campania-Lucania area, Southern Italy. J Geophys Eng 8:46–60. https://doi.org/10.1088/1742-2132/8/1/007
  • 27. Fisher RA (1990) Statistical methods, experimental design, and scientific inference. Oxford University Press, Oxford
  • 28. Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849. https://doi.org/10.1038/462848a
  • 29. Goertz-Allmann BP, Goertz A, Wiemer S (2011) Stress drop variations of induced earthquakes at the Basel geothermal site. Geophys Res Lett 38:L09308. https://doi.org/10.1029/2011GL047498
  • 30. Grigoli F, Cesca S, Priolo E, Rinaldi AP, Clinton JF, Stabile TA, Dost B, Fernandez MG, Wiemer S, Dahm T (2017) Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Rev Geophys 55:310–340. https://doi.org/10.1002/2016RG000542
  • 31. Gritto R, Jarpe SP (2014) Temporal variations of VP/Vs-ratio at the Geysers geothermal field. USA, Geothermics 52:112–211
  • 32. Guha SK (2000) Induced earthquake. Kluwer Academic Publishers, Dordrecht
  • 33. Henderson JR, Barton DJ, Foulger GR (1999) Fractal clustering of induced seismicity in the Geysers geothermal area, California. Geophys J Int 139:317–324
  • 34. Hutchings LB, Bonner S, Saltiel SJ, Nelson M (2019) Rock physics interpretation of tomographic solutions for geothermal reservoir properties in applied geophysics with case studies on environmental. Explor Eng Geophys. https://doi.org/10.5772/intechopen.78490
  • 35. Johnston DH, Toksoz MN, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: II. Mech Geophys 44:691–711
  • 36. Kale Ö, Akkar S, Ansari A, Hamzehloo H (2015) A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5 % damped response spectrum: investigation of possible regional effects. Bull Seismol Soc Am 105(2A):963–980
  • 37. Knopoff L (1964) Solid-earth geophysics. Q Rev Geophys 2:625–660
  • 38. Kotha SR, Bindi D, Cotton F (2016) Partially non-ergodic region specific GMPE for Europe and Middle-East. Bull Earthq Eng 14(4):1245–1263
  • 39. Lay T, Wallace TC (1995) Modern global seismology. Academic Press, New York, ISBN #0-12-732870-X
  • 40. Lengliné O, Lamourette L, Vivin L, Cuenot N, Schmittbuhl J (2014) Fluid-induced earthquakes with variable stress drop. J Geophys Res Solid Earth 119:8900–8913. https://doi.org/10.1002/2014JB011282
  • 41. Lior I, Ziv A (2018) The relation between ground motion, earthquake source parameters, and attenuation: Implications for source parameter inversion and ground motion prediction equations. J Geophys Res Solid Earth. https://doi.org/10.1029/2018JB015504
  • 42. López-Comino JA, Cesca S, Jarosławski J, Montcoudiol N, Heimann S, Dahm T, Lasocki T, Gunning A, Capuano P, Ellsworth WL (2018) Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site Poland. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-26970-9
  • 43. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441. https://doi.org/10.1137/0111030
  • 44. Martínez-Garzón P, Kwiatek G, Sone H, Bohnhoff M, Dresen G, Hartline C (2014) Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: a case study from the Geysers geothermal field. J Geophys Res 119:8378–8396. https://doi.org/10.1002/2014JB011385
  • 45. Morozov IB (2008) Geometrical attenuation, frequency dependence of Q, and the absorption band problem. Geophys J Int 172:239–252. https://doi.org/10.1111/j.1365-246X.2008.03888.x
  • 46. Ripperger J, Kastli P, Fah D, Giardini D (2009) Ground motion and macroseismic intensities of a seismic event related to geothermal reservoir stimulation below the city of Basel—observations and modeling. Geophys J Int 179:1757–1771. https://doi.org/10.1111/j.1365-246X.2009.04374.x
  • 47. Satoh T (2004) Inversion of S-wave velocity and Qs of deep sediments from surface to borehole spectral ratios considering obliquely incident SH and SV waves. In: Paper presented at the 13 world conference on earthquake engineering, Vancouver, Canada
  • 48. Sharma N, Convertito V, Maercklin N, Zollo A (2013) Ground motion prediction equation for “The Geysers” geothermal area based on induced seismicity records. Bull Seismol Soc Am 103:117–130. https://doi.org/10.1785/0120120138
  • 49. Staszek KM, Orlecka-Sikora B, Leptokaropoulos K, Kwiatek G, Martínez-Garzón P (2017) Temporal static stress drop variations due to injection activity at The Geysers geothermal field, California. Geophys Res Lett 44:7168–7176. https://doi.org/10.1002/2017GL073929
  • 50. Toksoz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I Laboratory measurements. Geophysics 44:681–690
  • 51. Valley B, Evans K (2007) Stress state at Soultz-Sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. In: Paper presented at thirty-second workshop on geothermal reservoir engineering, Stanford, USA
  • 52. Van Wees JD, Buijze L, Van Thienen-Visser K, Nepveu M, Wassing BBT, Orlic B, Fokker PA (2014) Geomechanics response and induced seismicity during gas field depletion in the Netherlands. Geothermics 52:206–219
  • 53. Wandycz P, Święch E, Eisner L et al (2019) (2019) Estimation of the quality factor based on the microseismicity recordings from Northern Poland. Acta Geophys 67:2005–2014. https://doi.org/10.1007/s11600-019-00362-7
  • 54. Wcisło M, Stabile TA, Telesca L, Eisner L (2017) Variations of attenuation and VP/VS ratio in the vicinity of wastewater injection: a case study of Costa Molina 2 well (High Agri Valley, Italy). Geophysics 83:B25–B3.1
  • 55. White RE (1992) The accuracy of estimating A from seismic data. Geophysics 57:1508–1511
  • 56. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72(441):445–446
  • 57. Zang A, Volker Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs—an overview. Geothermics. https://doi.org/10.1016/j.geothermics.2014.06.005
  • 58. Zollo A, de Lorenzo S (2001) Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: method and synthetic tests. J Geophys Res 106:16-287–16-306
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82d76db8-6dbf-4aae-8679-86a979856850
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.