Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The degradation of tebuconazole in the majority of Polish mineral soils withlow organic carbon content is slow, and its adsorptionis especially low in subsoils. Therefore, the fate of tebuconazole in these soils cannot be predicted based on the results of the adsorption and degradation experiments carried out in typical soils of the European Union. For this reason, the simulations of tebuconazole accumulation in Polish soils and its leaching to groundwater were carried out. The cultivation of winter cereals and winter oilseed rape was simulatedusing FOCUS PELMO in six Arenosol, Luvisol, and Chernozem profiles, representing 59% of Polish arable mineral soils.The simulations indicated that almost all fungicide that reached the soil surface was retained in the topsoil layer of 0–15 cm. The highest concentrations (range of 0.069–0.320 mg/kg) were estimated for the layer 0–5 cm. The results suggested that runoff can be the principal source of tebuconazole in surface water. It was found that the majority of tebuconazole that reached the soils was microbiologically degraded. However, in the years with unfavorable weather conditions for degradation, up to 11% of the tebuconazole that reached the soils remain undegraded. In addition to the accumulation of tebuconazole in the topsoils, the simulations indicated its very slow but constant penetration into the subsoils. The estimated concentrations of tebuconazole in percolate water were low: < 0.02 μg/L at the depth of 25 cm, < 0.002 μg/L at the depth of 75 cm, and trace concentrations at the depth of 1 m in one profile. The obtained results were consistent with the results of the monitoring studies available in literature.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
131--141
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
autor
- Department of Chemistry, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
Bibliografia
- 1. Aamlid T.S., Almvik M., Pettersen T., Bolli R. 2021. Leaching and surface runoff after fall application of fungicides on putting greens. Agronomy Journal, 1–21. DOI: 10.1002/Agj2.20549.
- 2. Albers C.N., Ernstsen V., Johnsen A.R. 2019. Soil domain and liquid manure affect pesticide sorption in macroporous clay till. Journal of Environmental Quality, 48(1), 147–155. DOI: 10.2134/jeq2018.06.0222.
- 3. Berenzen N., Lentzen-Godding A., Probst M., Schulz H., Schulz R., Liess M. 2005. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere, 58(5), 683–691. DOI: 10.1016/j.chemosphere.2004.05.009.
- 4. Bernasconi C., Demetrio P.M., Alonso L.L., Mac Loughlin T.M., Cerdá E., Sarandón S.J., Marino D.J. 2021. Evidence for soil pesticide contamination of an agroecological farm from a neighboring chemical-based production system. Agriculture Ecosystems & Environment, 313, 107341. DOI: 10.1016/J.Agee.2021.107341.
- 5. Bieganowski A., Witkowska-Walczak B., Gliński J., Sokołowska Z., Sławiński C., Brzezińska M., Włodarczyk T. 2013. Database of Polish arable mineral soils: a review. International Agrophysics, 27, 335–350. DOI: 10.2478/intag-2013–0003.
- 6. Bollmann U.E., Fernández-Calviño D., Brandt K.K., Storgaard M.S., Sanderson H., Bester K. 2017. Biocide runoff from building facades: Degradation kinetics in soil. Environmental Science & Technology, 51(7), 3694–3702. DOI: 10.1021/acs.est.6b05512.
- 7. Chabauty F., Pot V., Bourdat-Deschamps M., Bernet N., Labat C., Benoit P. 2016. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices. Environmental Science and Pollution Research, 23(7), 6907–6918. DOI: 10.1007/s11356–015–5938–9.
- 8. Comission of the European Communities, 1991. Council directive 91/414/EEC concerning the placing of plant protection products on the market. Official Journal of the European Communities, L, 230.
- 9. De Gerónimo E., Aparicio V.C., Bárbaro S., Portocarrero R., Jaime S., Costa J.L. 2014. Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere, 107, 423–431. DOI: 10.1016/j.chemosphere.2014.01.039.
- 10. EFSA. 2014. Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA J, 12(1), 3485, 1–98. DOI: 10.2903/j.efsa.2014.3485.
- 11. European Comission. 2014. Assessing potential for movement of active substances and their metabolites to ground water in the EU. Report of the FOCUS Ground Water Work Group.
- 12. European Comission. 2020. Commission Decision 2020/1161 of 4 August 2020. Official Journal of the European Union L 257/32.
- 13. European Comission. 2021a. EU Pesticides Database. [cited 2021 August 12]. Available from: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en.
- 14. European Comission. 2021b. Eurostat. [cited 2021 August 12]. Available from: https://ec.europa.eu/eurostat/databrowser/view/AEI_FM_SALPEST09__custom_1213735/default/table?lang=en.
- 15. FAO. 2011. Caldas E. D. Tebuconazole (189). Residue and analytical aspects. [cited 2021 August 12]. Available from: http://www.fao.org/fileadmin/user_upload/IPM_Pesticide/JMPR/Evaluations/2011/Tebuconazole.pdf.
- 16. Ferrari F., Klein M., Capri E., Trevisan M. 2005. Prediction of pesticide volatilization with PELMO 3.31. Chemosphere, 60, 705–713. DOI: 10.1016/j.chemosphere.2005.01.043.
- 17. GUS. 2020. Statistical yearbook of agriculture. Branch yearbooks. Central Statistical Office, Warsaw.
- 18. Hardy I., Gottesbüren B., Huber A., Jene B., Reinken G., Resseler H. 2008. Comparison of Lysimeter results and leaching model calculations for regulatory risk assessment. Journal of Consumer Protection and Food Safety, 3, 364–375. DOI: 10.1007/s00003–008–0376-y.
- 19. Hvezdova M., Kosubová P., Košiková M., Scherr K.E., Simek Z., Brodsky L., Šudoma M., Škulcová L., Sanka M., Svobodová M., Krkošková L., Vašičková J., Neuwirthová N., Bielska L., Hofman J. 2018. Currently and recently used pesticides in Central European arable soils. Science of the Total Environment, 613–614, 361–370. DOI: 10.1016/j.scitotenv.2017.09.049.
- 20. ISO 10390. 2020. Soil, treated biowaste and sludge – Determination of pH.
- 21. ISO 11277. 2020. Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation.
- 22. IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil Resources Reports No. 106. FAO, Rome.
- 23. Kahle M., Buerge I.J., Hauser A., Müller M.D., Poiger T. 2008. Azole fungicides: Occurrence and fate in wastewater and surface waters. Environmental Science & Technology, 42(19), 7193–7200. DOI: 10.1021/es8009309.
- 24. Kim I.S., Beaudette L.A., Shim J.H., Trevors J.T., Suh Y.T. 2002. Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant and Soil, 239(2), 321–331. DOI: 10.1023/A:1015000328350.
- 25. Klein M. 2018. PELMO (Pesticide Leaching Model)). Version 5.00. User Manual. Fraunhofer Institut for Molecular Biology and Applied Ecology, D-57392 Schmallenberg, Germany, 30.
- 26. Klein M., Müller M., Dust M., Görlitz G., Gottesbüren B., Hassink J., Kloskowski R., Kubiak R., Resseler H., Schäfer H., Stein B., Vereecken H. 1997. Validation of the pesticide leaching model PELMO using lysimeter studies performed for registration. Chemosphere, 35(11), 2563–2587. DOI: 10.1016/S0045–6535(97)00325–1.
- 27. Knäbel A., Meyer K., Rapp J., Schulz R. 2014. Fungicide field concentrations exceed FOCUS surface water predictions: urgent need of model improvement. Environmental Science & Technology, 48(1), 455–463. DOI: 10.1021/es4048329.
- 28. Kördel W., Klein M. 2006. Prediction of leaching and groundwater contamination of pesticides. Pure and Applied Chemistry, 78(5), 1081–1090. DOI: 10.1351/pac200678051081.
- 29. Leterme B., Vanclooster M., Rounsevell M.D., Bogaert P. 2006. Discriminating between point and non-point sources of atrazine contamination of a sandy aquifer. Science of the Total Environment, 362(1–3), 124–142. DOI: 10.1016/j.scitotenv.2005.06.010.
- 30. Lewis K.A., Tzilivakis J., Warner D.J., Green A. 2016. An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22, 1050–1064. DOI: 10.1080/10807039.2015.1133242.
- 31. Liu N., Dong F.S., Xu J., Liu X.G., Zheng Y.Q. 2016. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 126, 78–84. DOI: 10.1016/j.ecoenv.2015.12.007.
- 32. Matyjaszczyk E. 2011. Active substances used in plant protection in Poland after the European Union accession. Journal of Plant Protection Research, 51(3), 217–224. DOI: 10.2478/v10045–011–0037–5.
- 33. Matysiak K., Kaczmarek S. 2013. Effect of chlorocholine chloride and triazoles – tebuconazole and flusilazole on winter oilseed rape (Brassica Napus var. Oleifera L.) in response to the application term and sowing density. Journal of Plant Protection Research, 53(1), 79–88. DOI: 10.2478/jppr-2013–0012.
- 34. Ministry of Agriculture and Rural Development, 2021. The register of authorized plant protection products. [cited 2021 August 12]. Available from: https://www.gov.pl/web/rolnictwo/rejestr-rodkow-ochrony-roslin.
- 35. Pérez D.J., Okada E., De Gerónimo E., Menone M.L., Aparicio V.C., Costa J.L. 2017. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environmental Toxicology and Chemistry, 36(12), 3206–3216. DOI: 10.1002/etc.3897.
- 36. Potter T.L., Bosch D.D., Strickland T.C. 2014. Comparative assessment of herbicide and fungicide runoff risk: A case study for peanut production in the Southern Atlantic Coastal Plain (USA). Science of the Total Environment, 490, 1–10. DOI: 10.1016/j.scitotenv.2014.04.034.
- 37. Rabiet M., Margoum C., Gouy V., Carluer N., Coquery, M., 2010. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment – Effect of sampling frequency. Environmental Pollution, 158(3), 737–748. DOI: 10.1016/j.envpol.2009.10.014.
- 38. Rosenbom A.E., Olsen P., Plauborg F., Grant R., Juhler R.K., Brüsch W., Kjaer J. 2015. Pesticide leaching through sandy and loamy fields – long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme. Environmental Pollution, 201, 75–90. DOI: 10.1016/j.envpol.2015.03.002.
- 39. Siek M., Paszko T. 2019. Factors affecting coupled degradation and time-dependent sorption processes of tebuconazole in mineral soil profiles. Science of the Total Environment, 690, 1035–1047. DOI: 10.1016/j.scitotenv.2019.06.409.
- 40. Siek M., Paszko T., Jerzykiewicz M., Matysiak J., Wojcieszek U. 2021. Mechanisms of tebuconazole adsorption in profiles of mineral soils. Molecules 26, 4728. DOI: 10.3390/molecules26164728.
- 41. Silva V., Mol H.G.J., Zomer P., Tienstra M., Ritsema C.J., Geissen V. 2019. Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of the Total Environment, 653, 1532–1545. DOI: 10.1016/j.scitotenv.2018.10.441.
- 42. Singh N. 2005. Mobility of four triazole fungicides in two Indian soils. Pest Management Science, 61(2), 191–196. DOI: 10.1002/ps.973.
- 43. Tauchnitz N., Kurzius F., Rupp H., Schmidt G., Hauser B., Schrödter M., Meissner R. 2020. Assessment of pesticide inputs into surface waters by agricultural and urban sources – A case study in the Querne/Weida catchment, central Germany. Environmental Pollution, 267, 115186. DOI: 10.1016/j.envpol.2020.115186.
- 44. Van Metre P.C., Alvarez D.A., Mahler B.J., Nowell L., Sandstrom M., Moran P. 2017. Complex mixtures of pesticides in midwest US streams indicated by POCIS time-integrating samplers. Environmental Pollution, 220, 431–440. DOI: 10.1016/j.envpol.2016.09.085.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82c9559f-1481-4edd-b812-eb7f8aead1fe