PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Approach to Non-Volatile Metal Ion Production Using Plasma Ion Source with Internal Evaporator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new approach to application the internal evaporator in an arc discharge ion source is presented, namely a crucible with a plug made of feeding substance. This solution is suitable especially for high-melting point metallic feeding substances. The ion source was tested using Ni and Cr. Basic ion source characteristics, i.e. dependences of ion current and discharge voltage on discharge and filament currents as well as on the external magnetic field flux density are shown and discussed in order to find optimal working conditions. The maximal ion currents were 18 μA for Ni+ and 38μA for Cr+. The stability of the ion current was also tested. It was proven that ion source is able to provide intense ion beam current long enough to perform irradiations with the fluence of ~5×1015 cm-2 confirming the usefulness of the design for ion implantation purposes.
Słowa kluczowe
Twórcy
autor
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University in Lublin, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • 1. Milosevic M.M., Chen X., Yu X., Dinsdale N.J., Aktas O., Oo S.Z., Khokhar A.Z., et al. Ion Implantation of Germanium Into Silicon for Critical Coupling Control of Racetrack Resonators. Journal of Lightwave Technology. 2020; 38(7): 1865–1873.
  • 2. Miskiewicz S.A., Komarov A.F., Komarov F.F., Soroka S.A. Radiation Degradation of Bipolar Transistor Current Gain, Acta Physica Polonica A. 2017; 132(2): 288–290.
  • 3. Komarov F., Vlasukova L., Milchanin O., Mudryi A., Dunets B., Wesch W., Wendler E. Structure and optical properties of silicon layers with GaSb nanocrystals created by ion-beam synthesis. Phys. Status Solidi A. 2012; 209(1): 148–152.
  • 4. Somasundaram S., Ionescu M., Kannan Mathan
  • B. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications. Metals. 2018; 8(1): 30.
  • 5. Kamiński M., Budzyński P., Szala M., Turek M. Comparing of Microhardness of the Stellite 6 Cobalt Alloy Implanted with 175 keV Mn+ Ions and 120 keV N+ Ions Adv. Sci. Technol. Res. J. 2019; 13(3): 179–185.
  • 6. Kosinska A., Jagielski J., Ostaszewska U., Wyszkowska E., Clozel M., Kurpaska L., Romaniec M. Functional properties of low energy ion-irradiated e acrylonitrile- butadiene rubber. Nucl. Instr. Meth. B. 2019; 443: 15–18.
  • 7. Sagheer R., Shahid Rafique M., Saleemi F., Arif, S., Naab F., Toader O., Mahmood A.D., Rashid R., Hussain I. Modification in surface properties of poly-allyl-diglycol-carbonate (CR-39) implanted by Au+ ions at different fluences. Materials SciencePoland. 2016; 34(2): 468–478.
  • 8. Prucnal S., Żuk J., Hübner R., Duan J., Wang M., Pyszniak K., Drozdziel A., Turek M., and Zhou S., Electron Concentration Limit in Ge Doped by Ion Implantation and Flash Lamp Annealing. Materials. 2020; 13(6): 1408.
  • 9. Brown I.G. The Physics and Technology of Ion Sources. Wiley, 2004.
  • 10. Zhang H., Ion Sources. Science Press and Springer Verlag, 1999.
  • 11. Rangel C.M., Paiva T.I.C. Chromium ion implantation for inhibition of corrosion of aluminium. Surface and Coatings Technology. 1996; 83(1-3): 194–200.
  • 12. Dai J., Liu Z., Yu B., Ruan Q., Chu P.K. Effects of Ti, Ni, and Dual Ti/Ni Plasma Immersion Ion Implantation on the Corrosion and Wear Properties of Magnesium Alloy. Coatings. 2020; 10(4): 313.
  • 13. Tian L.P., Zhao X.H., Zuo Y. Formation of Anticorrosion Clusters on Anodic Alumina Films by Ni Ion Implantation. Advanced Materials Research. 2006; 11–12: 89–94.
  • 14. Onate J.I., Alonso F., Garcıa A. Improvement of tribological properties by ion implantation. Thin Solid Films. 1998; 317(1–2): 471–476.
  • 15. Chen X., Soveja A., Chaussumier M., Zhang P., Wei D., Ding F. Effect of MEVVA ion implantation on fatigue properties of TC18 titanium alloy. Surface and Coatings Technology. 2018; 344: 572–578.
  • 16. Szala M., Chocyk D., Skic A., Kamiński M., Macek W., Turek M. Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and CobaltBased Solid Solution Phase Transformations of HIPed Stellite 6. Materials. 2021; 14(9): 2324.
  • 17. Prudencio LM., Paramês L., Conde O., da Silva R.C. Cr ion implantation into Ti: Part I. Formation of intermetallic Laves phase, Surface and Coatings Technology. 2006; 200(12–13): 3907–3912.
  • 18. Ryabchikov A.I., Kashkarov E.B., Shevelev A.E., Syrtanov M.S. High-intensity chromium ion implantation into Zr-1Nb alloy. Surface and Coatings Technology. 2020; 383: 125272.
  • 19. Wang Z., Wu H., Liu Y., Liu C. Room Temperature Ferromagnetism in InGaN Nanostructures Induced by Cr+ ion Implantation. Nanomaterials. 2020; 10(6): 1128.
  • 20. Popovych V.D., Böttger R., Heller R., Zhou S., Bester M., Cieniek B., Mroczka R., Lopucki R, Sagan P., Kuzma M. Heavy doping of CdTe single crystals by Cr ion implantation. Nucl. Instr. and Meth. B. 2018; 419: 26–31.
  • 21. Ding B.F. Investigation of structural and magnetic properties of Ni implanted rutile. Science China Physics, Mechanics and Astronomy. 2012; 55: 247–251.
  • 22. Sundaravel B., Kalavathi S., Santhana Raman P., Satyam P. V., Nair K.G.M. Formation of NiSi2 nanoclusters by Ni ion implantation into Si(100) and the effect of preinjection of Si2+ ions, AIP Conference Proceedings. 2012; 1447: 285–286.
  • 23. Prakash T., Williams G., Kennedy J. Synthesis of magnetic nanoparticles by low-energy dual ion implantation of iron and nickel into silicon dioxide followed by electron beam annealing. International Journal of Nanotechnology. 2017; 14(1–6): 348–355.
  • 24. Zhou S., Potzger K., von Borany J., Grötzschel R., Skorupa W., Helm M., Fassbender J. Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B. 2008; 77: 035209.
  • 25. Xiang X., Zu X.T., Bao J.W., Zhu S., Wang L.M. Optical properties and structure characterization of sapphire after Ni ion implantation and annealing. Journal of Applied Physics. 2005; 98: 073524
  • 26. Sze J.Y., Tay B.K., Pakes C.I., Jamieson D.N., Prawer S. Conducting Ni nanoparticles in an ionmodified polymer. Journal of Applied Physics. 2005; 98: 066101.
  • 27. Nathawat R., Vijay Y.K., Kumar P., Kulriya P., Ganesan V., Sathe V. Physically and Chemically Modified Polycarbonate by Metal Ion Implantation. Advances in Polymer Technology. 2008; 27(3): 143–151.
  • 28. Popok V. Ion implantation of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 2012; 30: 1–26.
  • 29. Brown I.G., Feinberg B., Galvin J.E. Multiply stripped ion generation in the metal vapor vacuum arc. J. Appl. Phys. 1988; 63: 4889.
  • 30. Gao Y., Yu Y.J., Tang D.L., Huang Y.M., Geng M., Gong X.R. Development and experiments of a MEVVA ion source. Rev. Sci. Instr. 1994; 65(4): 1281.
  • 31. Koivisto H., Arje J., Nurmia M. Metal ions from the volatile compounds method for the production of metal ion beams. Rev. Sci. Instr. 1998; 69(2): 785.
  • 32. Bogomolov S.L., Bondarchenko A.E., Efremov A.A., Kuzmenkov K.I., Lebedev A.N., Lebedev K.V., Lebedev V.Y., Loginov V.N., Mironov V.E., Yazvitsky N.Y. Production of intense metal ion beams from ECR ion sources using the MIVOC method. Physics of Particles and Nuclei Letters. 2015; 12(7): 824–830.
  • 33. Jovović J., Cvetić J., Dobrosavljević A., Nedeljković T., Jovanović B., Draganić I. MIVOC method at the mVINIS ion source. Nuclear Technology and Radiation Protection. 2007; 22(2): 10–14.
  • 34. Kheswa N., Thomae R., Nemulodi F., Mira J., Conradie L., Fourie D., Bogomolov S., Efremov A. Production of high intensity nickel-ion beams with high isotope purity with the metal ions from volatile compound (MIVOC) method, AIP Conf. Proc. 2018; 2011: 040007.
  • 35. Kanter M. High-current sputtering ion source for refractory metals, Nucl. Instrum. Meth. B. 1992; 70(1–4): 200–204.
  • 36. Oks E., Anders A. A self-sputtering ion source: A new approach to quiescent metal ion beams. Rev. Sci. Instr. 2010; 81(2): 02B306.
  • 37. Gill C.G., Garrett A.W., Hemberger P.H., Nogar N.S. Resonant laser ablation as a selective metal ion source for gas-phase ion molecule reactions. J Am Soc Mass Spectrom. 1996; 7(7): 664–667.
  • 38. Gammino S., Torrisi L., Ciavola G., Ando L., Wolowski J., Laska L., Krasa J., Picciotto A. Highly charged heavy ion generation by pulsed laser irradiation. Nucl. Instrum. Meth. B. 2003; 209(2): 345–350. 39. Nitschke J. M. An electron-beam-generated-plasma ion source for on-line isotope separation. Nucl. Instrum. Meth. A 1985; 236(1): 1–16.
  • 40. Turek M., Prucnal S., Droździel A., Pyszniak K. Arc discharge ion source for europium and other refractory metals implantation. Rev. Sci. Instr. 2009; 80(4): 043304.
  • 41. Turek M., Drozdziel A., Pyszniak K., Prucnal S., Zuk J. Źródło jonów z parownikiem ogrzewanym przez wyładowanie łukowe. Symulacje komputerowe i eksperyment. Przegląd Elektrotechniczny. 2010; 86(7): 193–196. (in Polish)
  • 42. Turek M., Drozdziel A., Pyszniak K., Prucnal S. Versatile plasma ion source with an internal evaporator, Nucl. Instr. Meth. B. 2011; 269, 700–707.
  • 43. Turek M., Droździel A., Pyszniak K., Prucnal S., Mączka D., Yushkevich Yu., Vaganov, Yu. Plasma Sources of Ions of Solids. Instrum. Exp. Techn. 2012; 55; 469–481.
  • 44. Turek M., Droździel A., Pyszniak K., Prucnal S. Tailoring the Internal Evaporator for Effective Ion Beam Production. Volatile vs. Non-Volatile Substances. Acta Physica Polonica A. 2015; 128(5): 939–942.
  • 45. Turek M., Droździel A., Pyszniak K., Prucnal S., Mączka D. Production of Mo+ Beams Using an Arc Discharge Ion Source. Acta Physica Polonica A 2014; 125(6): 1388–1391.
  • 46. Turek M., Droździel A., Pyszniak K., Filiks J., Prucnal S., Mączka D., Vaganov Yu., Węgierek P. Production of Molybdenum and Tantalum Ion Beams using CCl2F2, Acta Physica Polonica A 2017; 132(2): 283–287.
  • 47. Turek M., Droździel A., Pyszniak K., Prucnal S. Production of rare earths ion beams in arc discharge ion source using their oxides, Przegląd Elektrotechniczny 2016; 92(8): 158–161.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82bac299-6fd3-41fc-9192-0e918fb046f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.