Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper there are presented some results obtained by open circuit potential and electrochemical impedance spectroscopy measurements from studies performed on the behavior of tribocorrosion on metallic implant biomaterials as: 304L stainless steel, Co/nano-CeO2 nanocomposite layer and Ti6Al4V untreated and oxidized alloy to form a nanoporous TiO2 film. The open circuit potential technique used in measuring the tribocorrosion process provide information on the active or passive behavior of the investigated metallic biomaterial in the biological fluid, before, during friction and after stopping the friction. Thus it clearly show a better behavior of Co/nano-CeO2 nanocomposite coatings as compared with 304L stainless steel to tribocorrosion degradation in Hank solution; as well the better behavior of nanoporous TiO2 film formed annodically on Ti6Al4V alloy surface as compared with untreated alloy to tribocorrosion degradation in artificial saliva Fusayama Meyer. The slight decrease in polarization resistance value resulted from electrochemical impedance spectroscopy measured during friction in the case of the Co/nano-CeO2 nanocomposite layer (four times smaller), compared to 304L stainless steel, whose polarization resistance decreased more than 1000 times during friction shows the higher sensitivity of stainless steel to degradation by tribocorrosion. The same behavior is observed when comparing the polarization resistance of untreated titanium alloy recorded during friction that is about 200 hundred times smaller, while the specific polarization resistance of the oxidized alloy with the nanoporous film of titanium oxide, decreases very little during friction, highlighting the beneficial effect of modifying the titanium alloy by anodic oxidation to increase its resistance to the degradation process by tribocorrosion.
Wydawca
Czasopismo
Rocznik
Tom
Strony
547--554
Opis fizyczny
Bibliogr. 25 poz., rys., wzory
Twórcy
autor
- Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
Bibliografia
- [1] P. Ponthiaux, F. Wenger, D. Drees, J.P. Celis, Wear 256, 459-468 (2004).
- [2] I. García, D. Drees, J.P. Celis, Wear 249, 452-460 (2001).
- [3] J. Rituerto Sin, S. Suñer, A. Neville, N. Emami, Tribol. Int. 75, 10-15 (2014).
- [4] L. Benea, P. Ponthiaux, F. Wenger, J. Galland, D. Hertz, J.Y. Malo, Wear 256 (9-10), 948-953 (2004).
- [5] P. Ren, H. Meng, Q. Xia, Z. Zhu, M. He, Corros. Sci. 180, 109185 (2021).
- [6] D. Landolt, S. Mischler, M. Stemp, Electrochim. Acta 46, 3913-3929 (2001).
- [7] L. Benea, S.B. Bașa, E. Dănăilă, N. Caron, O. Raquet, P. Ponthiaux, J.P. Celis, Mater. Design 65, 550-558 (2015).
- [8] L. Benea, N. Caron, O. Raquet, Rsc Adv. 6, 59775-59783 (2016).
- [9] L. Benea. E. Danaila, P. Ponthiaux, Corros. Sci. 91, 262-271 (2015).
- [10] A. Berradja, F. Bratu, L. Benea, G. Willems And J.P. Celis, Wear 261 (9), 987-993 (2006).
- [11] L. Benea, N. Simionescu, J.P. Celis, J. Mech. Behav. Biomed. Mater. 101, 103443 (2020).
- [12] M.T. Mathew, J.J. Jacobs, M.A. Wimmer, Clin. Orthop. Relat. Res. 470 (11), 3109-3117 (2012).
- [13] M.T. Mathew, M.A. Wimmer, 13 - Tribocorrosion in artificial joints: in vitro testing and clinical implications, Bio-Tribocorrosion in Biomaterials and Medical Implants, Woodhead Publishing, Sawston (2013).
- [14] C. Dini, R.C. Costa, C. Sukotjo, T.G. Christos, M.T. Mathew, A.R.V. Barão, Front. Mech. Eng. 6, 1 (2020).
- [15] N. Eliaz, Degradation of implant materials, Springer, New York (2012).
- [16] S.A. Alves, A.L. Rossi, A.R. Ribeiro, F. Toptan, A.M. Pinto, J.P. Celis, T. Shokuhfar, L.A. Rocha, Wear 384-385, 28-42 (2017).
- [17] L. Benea, E. Mardare-Danaila, J.P. Celis, Tribol. Int. 78, 168-175 (2014).
- [18] F. Bratu, L. Benea, J.P. Celis, Rev. Chim. (Bucuresti), 59 (3), 346-350 (2008).
- [19] L. Benea, Studying tribocorrosion processes in biomedical and industrial applications, CD Proceedings Volume of 8th International Conference on Tribology - Balkantrib’14, 30 October - 1 November 2014, Sinaia, Romania, 425-431. ISBN: 978-973-719-570-8.
- [20] E. Dănăilă, L. Benea, J.P. Celis, Tribo-electrochemical characterization of Ti-6Al-4V alloy and nanoporous TiO2 layer in simulated body fluid solution, CD Proceedings Volume Of 8 th International Conference on Tribology - Balkantrib’14, 30 October - 1 November 2014, Sinaia, Romania, 455-458. ISBN: 978-973-719-570-8.
- [21] A. López-Ortega, J.L. Arana, R. Bayón, Int. J. Corros. 7345346, 1-24 (2018). DOI: https://doi.org/10.1155/2018/7345346
- [22] J. Géringer, B. Boyer, K. Kim. Fretting corrosion in biomedical implants. D. Landolt, S. Mischler, Tribocorrosion of passive metals and coatings, woodhead publishing limited (2011). https://hal.archives-ouvertes.fr/hal-00683150
- [23] P. Ponthiaux, F. Wenger, and J.P. Celis, Tribocorrosion: Material Behavior Under Combined Conditions of Corrosion and Mechanical Loading, Corrosion Resistance, In Tech, ISBN: 978-953-51-0467-4 (2012). DOI: http://dx.doi.org/10.5772/35634
- [24] N. Diomidis, J.P. Celis, P. Ponthiaux, F. Wenger, Wear 269 (1-2), 93-103 (2010).
- [25] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, in: B.E. Conway, J.O.M. Bockris, R. White (Eds.) Modern Aspects of Electrochemistry, Springer, US (2002).
Uwagi
1. All the experimental work was performed at Competences Center Interfaces - Tribocorrosion and Electrochemical Systems (CC-ITES). The authors would like to express appreciation for Prof. Jean-Pierre Celis from Katholieke University of Leuven, Belgium and Prof. Pierre Ponthiaux from Ecole Centrale Paris, France for they valuable scientific advice.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82b7b322-86d7-4452-8040-c04f5db236fe