PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydraulic Borehole Mining (HBM) technology employed in lignite mining - technical, economic and market aspects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of a cost-effectiveness and economic efficiency assessment of the Hydraulic Borehole Mining (HBM) technology applied to lignite mining are presented. The Dynamic Generation Cost, the Net Present Value, and the Internal Rate of Return were calculated for the extraction of lignite at a rate of about 3.44 million Mg/year from a mining parcel of 1 x2.5 km, taking into account CAPEX and OPEX. The cost of mining 1 Mg of lignite using the HBM technology was reported to be lower than its market prices before the energy crisis in Europe caused by the war in Ukraine. The values of the NPV and IRR confirm that the HBM technology may be economically effective in lignite mining. The greatest influence on the cost-effectiveness of the HBM technology was caused by the price of backfill and the diameter of the mining cavern. The NPV is affected by changes in lignite prices. The capital expenditures required by the HBM technology have the least impact on the results in contrary to the open-pit mining technology. Lignite mining using the HBM technology is possible at a level similar to the current level of mining by open-pit technology in Polish conditions.
Rocznik
Strony
147--159
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Central Mining Institute, Department of Mining Aerology, Katowice, Poland
  • Central Mining Institute, Department of Energy Saving and Air Protection, Katowice, Poland
autor
  • Central Mining Institute, Department of Mining Aerology, Katowice, Poland
  • Central Mining Institute, Department of Energy Saving and Air Protection, Katowice, Poland
Bibliografia
  • [1] Duda A, Fidalgo Valverde G. Environmental and safety risks related to methane emissions in underground coal mine closure processes. Energies 2020;23:6312. https://doi.org/10.3390/en13236312.
  • [2] Fidalgo Valverde G, Duda A, Iglesias Rodriguez FJ, Frejowski A, Todorov I. Groundwater risk assessment in the context of an underground coal mine closure and an economic evaluation of proposed treatments: a case study. Energies 2021;14(6):1671. https://doi.org/10.3390/en14061671.
  • [3] Beck D. Applicability of hydraulic borehole mining (’HBHM’) to diamondiferous deposits. Master thesis.. New Mexico, USA: New Mexico Institute of Mining and Technology, Department of Mineral Engineering Socorro; 2016. https://doi.org/10.13140/RG.2.2.14111.56485.
  • [4] Jura W. Attempt of adaptation of the method of hydroopenings in the coal deposits of strong methane threat and in “restricted” conditions (In Polish: próba adaptacji metody hydrootworowej w złozach węgla kamiennego o silnym zagrozeniu metanowym oraz w warunkach “skrępowanych”). Bezpieczeństwo Pracy i Ochrona Srodowiska w Górnictwie 2011;4:9-15. https://www.wug.gov.pl/wydawnictwa/archiwum/224/1686.
  • [5] Dibble MF. Borehole mining: improved technology expands horizon. Min Eng 1991;43(3):313-8.
  • [6] Kinley Exploration LCC. http://www.kinleyexploration.com/hydraulic-borehole-mining/.
  • [7] Takaya Y, Yasukawa K, Kawasaki T, Fujinaga K, Ohta J, Usui Y, et al. The tremendous potential of deepsea mud as a source of rare-earth elements. Sci Rep 2018;8:5763. https://doi:10.1038/s41598-018-23948-5.
  • [8] Maksymowicz M, Frejowski A, Bajcar A, Jura B. Application of hydro borehole mining (HBM) technology for lignite extraction- an environmental assessment (LCA) and a comparative study with the opencast method. Energies 2022; 15:4845. https://doi.org/10.3390/en15134845.
  • [9] BAUER Group. https://www.bauer.de/export/shared/documents/pdf/bma/datenblatter/Mining_EN_905_852_2.pdf.
  • [10] Researchgate. https://www.researchgate.net/publication/296077919_Introducing_borehole_mining#fullTextFileContent11.
  • [11] Summers DA. Waterjetting technology. London: CRC Press; 2003.
  • [12] Savanick G. Borehole (slurry) mining of coal, uraniferous sandstone, oil sands, and phosphate ore. Bureau of Mines report of investigation RI 9101. Report of investigations (United States. Bureau of Mines 1987, 9101;1987, https://stacks.cdc.gov/view/cdc/10333/cdc_10333_DS1.pdf.
  • [13] Jura W. Hydraulic borehole mining (HBM) technology: an overview. In: Proceedings of the 19th world mining congress; Nov. 2003. p. 905-16. New Delhi, India; 1-5.
  • [14] Klich A, Jura W, Mazurkiewicz M. Application of water jet energy in the Borehole Mining. In: Proceedings of the 7th American water jet conference. USA: Seattle WA; August 1993. p. 473-84. 28-31.
  • [15] Dubinski J, Jura B, Makówka J, Janoszek T, Skiba J, Hildebandt R, et al. In-situ experimental study on hydroborehole technology application to improve the hard coal excavating techniques in coal mine. Sci Rep 2023;13(1):1190. https://doi.org/10.1038/s41598-023-28501-7.
  • [16] Jura B, Jura W, Skiba J. Integrated extraction of coal and methane from the multi coal seams using hydro borehole mining technology. In: Proceedings of the 6th international symposium on green mining; November 2013. p. 24-6. Australia.
  • [17] Bondarchuk IB, Shenderova I. Classification of hydraulic borehole mining technological processes during pay zone development. IOP Conf Ser Earth Environ Sci 2015;24: 012004. https://doi.org/10.1088/1755-1315/24/1/012004.
  • [18] Wen J, Chen C. Optimizing the structure of the straight cone nozzle and the parameters of borehole hydraulic mining for Huadian oil shale based on experimental research. Energies 2017;10(12):2021. https://doi.org/10.3390/en10122021.
  • [19] Xia B, Zeng X, Mao Z. Research on one borehole hydraulic coal mining system. Earth Sci Front 2008;15(4):222-6. https://doi.org/10.1016/S1872-5791(08)60057-3.
  • [20] Rochev V. Hydraulic borehole mining method possible application at Middle Larba alluvial gold field. E3S Web Conf 2018;56:01025. https://doi.org/10.1051/e3sconf/20185601025.
  • [21] Enany P, Shevchenko O, Drebenstedt C. Experimental evaluation of airlift performance for vertical pumping of water in underground mines. Mine Water Environ 2021; 40(4):970-9. https://doi.org/10.1007/s10230-021-00807-w.
  • [22] Enany P, Shevchenko O, Drebenstedt C. Particle transport velocity in vertical transmission with an airlift pump. Fluid 2022;7(3):95. https://doi.org/10.3390/fluids7030095.
  • [23] Shimizu K, Takagi S. Study on the performance of a 200 m airlift pump for water and highly-viscous shear-thinning slurry. Int J Multiphas Flow 2021;142:1-12. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103726.
  • [24] Ligus G, Zając D, Masiukiewicz M, Anweiler S. A new method of selecting the airlift pump optimum efficiency at low submergence ratios with the use of image analysis. Energies 2019;12(4):735. https://doi.org/10.3390/en12040735.
  • [25] Kujawiak S, Makowska M, Matz R. Hydraulic characteristics of the airlift pump. Acta Sci Pol Form 2018;4:85-95.
  • [26] Doyle RL, Halkyard JE. Large scale airlift experiments for application to deep ocean mining. In: Proceedings of ASME 2007 26th international conference on offshore mechanics and arctic engineering; June, 2007. p. 27-36. San Diego, California, USA; 10-15.
  • [27] Dubinski J, Szczepióski J, Bajcar A, Jura W, Skiba J, Jura B, et al. Assumption for the HydroCoal Plus project (in polish: załozenia projektu HydroCoal Plus). Węgiel Brunatny 2018; 4(105):44-6.
  • [28] Floyd EL, Chen J, Gordon P, Ireland S, Mabe B, Poon P, et al. Borehole hydraulic coal mining system analysis. Pasadena CA, USA: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology; 1977.
  • [29] Central Mining Institute. https://hydrocoalplus.eu/.
  • [30] Burchart-Korol D, Krawczyk P, Czaplicka-Kolarz K, Smolinski A. Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel 2016;173:239-46.
  • [31] Krawczyk P, Sliwinska A. Eco-Efficiency assessment of the application of large-scale rechargeable batteries in a coal- fired power plant. Energies 2020;13(6):1384. https://doi.org/10.3390/en13061384.
  • [32] Rączka J. Cost effectiveness analysis based on dynamic generation cost index. Training materials developed under the TRANSFORM ADVICE PROGRAMME - investment in Environmental Infrastructure in Poland (In Polish: Analiza efektywnosci kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego), https://view.officeapps.live.com/op/view.aspx?src=http%3A%2F%2Ftekstowa-edukacja.beta.nfosigw.gov.pl%2Fgfx%2Fnfosigw%2Fuserfiles%2Ffiles%2Fsrodki_zagraniczne%2Farchiwum%2Fispa%2Fprzygotowanie_przedsiewziec%2Fanaliza_dgc.doc&wdOrigin=BROWSELINK.
  • [33] Sierpińska M, Jachna T. Company assessment according to global standards. In: Polish: ocena przedsiębiorstwa według standardów światowych). Warsaw, Poland: PWN; 2000.
  • [34] Rogowski W. Investment effectiveness account. In: Polish: rachunek efektywnosci inwestycji). Warsaw, Poland: Wydawnictwo Nieoczywiste; 2018.
  • [35] European Commission EC. Guide to cost-benefit analysis of investment projects. Economic appraisal tool for cohesion policy 2014-2020. Brussels, Belgium EC. Directorate-General for Regional and Urban Policy; 2015.
  • [36] Ministry of Climate and Environment, MCE. Energy policy of Poland to 2040. Warsaw: Ministry of Climate and Environment; 2021.
  • [37] Ministry of Development, MDE. https://www.funduszeeuropejskie.gov.pl/media/95471/warianty_rozwoju_14_20.pdf.
  • [38] Pluta M, Wyrwa A, Zysk J, Suwała W, Raczynski M. Scenario analysis of the development of the Polish power system towards achieving climate neutrality in 2050. Energies 2023; 16:5918. https://doi.org/10.3390/en16165918.
  • [39] Druchin S, Klucznik M, Rybacki J, Sajnóg S, Sułkowski D. PIE economic review: summer 2023 (In Polish: przegląd gospodarczy PIE: lato 2023). Warsaw, Poland: Polish Economic Institute; 2023. https://pie.net.pl/wp-content/uploads/2023/08/Przeglad_gospodarczy_lato_2023.pdf.
  • [40] Krawczyk P, Howaniec N, Smolinski A. Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 2016;114:1207-13.
  • [41] Polish Energy Market Agency. Statistics of Polish power industry 2021 (In Polish: Statystyka elektroenergetyki polskiej 2021), https://www.are.waw.pl/badania-statystyczne/wynikowe-informacje-statystyczne/publikacje-roczne#statystyka-elektroenergetyki-polskiej.
  • [42] U.S. Energy Information Administration. https://www.eia.gov/energyexplained/coal/prices-and-outlook.php.
  • [43] PGE Górnictwo i Energetyka Konwencjonalna S.A., PGE. https://kwbbelchatow.pgegiek.pl/O-oddziale.
  • [44] Statista. https://www.statista.com/statistics/264779/countries-with-the-largest-soft-brown-coal-production/.
  • [45] Polish Geological Institute, PGI. https://geoportal.pgi.gov.pl/surowce/energetyczne/wegiel_brunatny.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82b4d0cb-5c2c-4653-9129-58a871abf522
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.