PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of a novel environmental friendly plasticizer based on tung oil fatty acid for poly (vinyl chloride) blends

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel environmental friendly plasticizer (TPE) derived from tung oil fatty acid with long fatty acid chain and high degree of branching was synthesized. Chemical structure of the obtained TPE was characterized with Fourier transform infrared spectroscopy (FT-IR) and  1H NMR. TPE was used to prepare plasticized PVC blends as main plasticizer. Thermal stability, mechanical properties and migration resistance of poly (vinyl chloride) plasticized with TPE were investigated. The results showed that torque data of plasticized PVC blends reached 12.4 N·m when the mass of the TPE was 50 wt.%. TPE improved the thermal stability of PVC blends obviously than dioctyl phthalate (DOP). The leaching tests showed that PVC plasticized with TPE were with higher migration resistance than that of DOP. The excellent thermal stability and high migration resistance of PVC blends showed high application value for TPE.
Rocznik
Strony
92--97
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, GuangDong, 525000, P. R. China
autor
  • College of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
Bibliografia
  • 1. Ang, D.T., Khong, Y.K. & Gan, S.N. (2014). Palm oil-based compound as environmentally friendly plasticizer for poly(vinyl chloride). J. Vinyl Addit. Technol. 22 (1), 80–87. DOI 10.1002/vnl.21434.
  • 2. Hsu, N.Y., Liu, Y.C., Lee, C.W. & Su, H.J. (2017). Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper. Environ. Res. 152, 1–6. DOI: 10.1016/j.envres.2016.09.027.
  • 3. Pyeon, H.B., Park, J.E. & Done, H.S.(2017). Non-phthalate plasticizer from camphor for flexible PVC with a wide range of available temperature. Polym. Test. 63. DOI 10.1016/j.polymertesting. 2017.08.029.
  • 4. Zheng, X. & Gilbert, M. (2000). Impact strength of high density microcellular poly(vinyl chloride) foams. J. Vinyl Addit. Technol. 6(2), 93–99. DOI 10.1002/vnl.21408.
  • 5. Shi, G.X., Cooper, D.G. & Maric,M. (2011). Poly(E-caprolactone)-based ‘green’ plasticizers for poly(vinyl chloride). Polym. Degrad. Stabil. 96 (9), 1639–1647. DOI 10.1016/J. Polymdegradstab.2011.06.007.
  • 6. Benaniba, M.T. & Massardier-Nageotte, V.(2010). Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC. J. Appl. Polym. Sci. 118 (6), 3499–3508. DOI 10.1002/app.32713.
  • 7. Rahman, M. & Bazel, C.S. (2004). The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 29 (12), 1223–1248. DOI: https://doi.org/10.1016/j.progpolymsci.2004.10.001.
  • 8. Jia, P., Zhang, M., Hu, L., Wang, R., Sun, C. & Zhou, Y. (2017). Cardanol groups grafted on poly(vinyl chloride)-synthesis, performance and plasticization mechanism. Polymers, 9(11), 621. DOI: 10.3390/polym9110621.
  • 9. Chen, J., Liu, Z., Li, X., Liu, P., Jiang, J. & Nie, X. (2016) Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride). Polym. Degrad. Stabil. 126, 58–64. https://doi.org/10.1016/j.polymdegradstab.2016.01.018.
  • 10. Chen, J.,Wang, Y., Huang, J., Li, K. & Nie, X.(2018). Synthesis of tung-oil-based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films.ACS Sustainable Chem. Eng. 6(1), 642–651. DOI: 10.1021/acssuschemeng.7b02989.
  • 11. Chen, J.,Wang, Y., Huang, J., Li, K., Nie, X. & Jiang, J. (2017).Synthesis and properties of a novel environmental epoxidized glycidyl ester of ricinoleic acetic ester plasticizer for poly(vinyl chloride). Polymers. 9(12), 640. DOI: 10.3390/polym9120640.
  • 12. Chen, J., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly(vinyl chloride). Polym. Int. 67(3), 269–275. DOI: https://doi.org/10.1002/pi.5503.
  • 13. Jia, P., Hu, L., Shang, Q., Wang, R., Zhang, M. & Zhou, Y. (2017). Self-Plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether. ACS Sustain. Chem Eng. 5(8), 6665–6673. DOI: 10.1021/acssuschemeng.7b00900.
  • 14. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. RSC Adv. 2015, 5, 41169–41178. DOI 10.1039/C5RA05784A.
  • 15. Chieng, B.W., Ibrahim, N.A., Then, Y.Y. & Loo, Y.Y. (2017). Epoxidized jatropha oil as a sustainable plasticizer to poly(lactic acid). Polymers. 9, 204–214. DOI: 10.3390/polym9060204.
  • 16. Fenollar, O., Garcia-sanoguera, D., Sanchez-Nacher, L., Lopez, J. & Balart, R. (2013). Mechanical and thermal properties of polyvinyl chloride plasticized with natural fatty acid esters. Polymer-Plastics Technology and Engineering. 52, 751–767. https://doi.org/10.1080/03602559.2013.763352.
  • 17. Jia,. P., Zhang, M., Hu, L. & Zhou, Y. (2016).A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride). Pol. J. Chem. Technol. 18(1), 9–14. DOI: https://doi.org/10.1515/pjct-2016-0002.
  • 18. Lee, S., Park, M.S., Shin, J. & Kim, Y.W. (2018). Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC. Polym. Degrad. Stabil. DOI: 10.1016/j.polymdegradstab.2017.11.002.
  • 19. Chaudhary, B.I., Nguyen, B., Smith, P., Sunday, N. & Luong, M. (2015). Bis(2-ethylhexyl) succinate in mixtures with epoxidized soybean oil as bio-based plasticizers for poly(vinylchloride). Polym. Eng. Sci. 55 (3), 634–640. DOI: 10.1002/pen.23934.
  • 20. Jia, P., Zhang, M., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Synthesis and application of environmental castor oil based polyol ester plasticizers for poly (vinyl chloride). ACS Sustain. Chem. Eng. 3, 2187–2193. DOI: 10.1021/acssuschemeng. 5b00449.
  • 21. Gamage, P.K. & Farid, A.S. (2011). Migration of novel epoxidized neem oil as plasticizer from PVC: Experimental design approach. J. Appl. Polym. SCI. 121(2), 823–838. DOI: 10.1002/app.33554.
  • 22. Yang, B., Bai Y. & Cao, Y. (2010). Effects of inorganic nano-particles on plasticizers migration of flexible PVC. J. Appl. Polym. Sci. 115(4), 2178–2182. DOI: 10.1002/app.31310.
  • 23. Lacerda, T., Carvalho, A.F. & Gandini, A. (2014). Two alternative approaches to the Diels-Alder polymerization of tung oil. RSC Adv. 4(51), 26829–26837. DOI: 10.1039/c4ra03416c.
  • 24. Huang, K., Liu, Z., Zhang, J., Li, S., Li, M., Xia, J. & Zhou, Y. (2014) Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromolecules. 15(3), 837–843. DOI: 10.1021/bm4018929.
  • 25. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: Preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.
  • 26. Meiorin, C., Aranguren, M.I. & Mosiewicki, M.A. (2015). Polymeric networks based on tung oil: Reaction and modification with green oil monomers. Eur. Polym. J. 67, 551–560. DOI: 10.1016/j.eurpolymj.2015.01.005.
  • 27. Jia, P., Hu, L., Yang, X., Zhang, M., Shang, Q. & Zhou, Y. (2017). Internally plasticized PVC materials via covalent attachment of aminated tung oil methyl ester. RSC Adv. 7(48), 30101–30108. DOI: 10.1039/C7RA04386D.
  • 28. Jia, P., Zhang, M., Hu, L., Song, F., Feng, G. & Zhou, Y. (2017). A strategy for nonmigrating plasticized PVC modified with mannich base of waste cooking oil methyl ester. Sci Rep. 2018; 8: 1589. DOI: 10.1038/s41598-018-19958-y.
  • 29. Yao, Q. & Wilkie, C.A. (2001).Thermal degradation of PVC in the presence of polystyrene. J. Vinyl. Addit. Technol.7(1), 26–36. DOI: 10.1002/vnl.10261.
  • 30. Soudais, Y., Moga, L., Blazek, J. & Lemort, F. (2007). Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. J. Anal. Appl. Pyrolysis.78(1):46–57. DOI: https://doi.org/10.1016/j.jaap.2006.04.005.
  • 31. Li, Y., Wang, C., Wang G. & Qu, Z. (2008). Application of the long-chain linear polyester in plastifi cation of PVC. J. Wuhan Univ. Technol. 23(1), 100–104. DOI: 10.1007/S11595-006-1100-3.
  • 32. Yin, B. & Hakkarainen, M. (2010). Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC. J. Appl. Polym. Sci. 119(4), 2400–2407. DOI: 10.1002/app.32913.
  • 33. Gonzalez, N. & Fernandez-Berridi, M.J. (2006). Application of fourier transform infrared spectroscopy in the study of interactions between PVC and plasticizers: PVC/plasticizer compatibility versus chemical structure of plasticizer. J. Appl. Polym. Sci. 101, 1731–1737. DOI: 10.1002/app.23381.
  • 34. Suresh, S.S., Mohanty, S. & Nayak, S.K. (2017). Bio-based epoxidised oil for compatibilization and value addition of poly (vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) in recycled blend. J. Polym. Res. 24, 120. DOI: https://doi.org/10.1007/s10965-017-1
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82b1510b-a22f-4fd5-b65c-2695e434df4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.