PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of montmorillonite hydration and delamination on coal flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the influence of montmorillonite (MT) hydration and delamination on coal flotation was investigated through flotation tests using coal-MT mixtures. MT particles were subjected to hydration at different time intervals. The Fuerstenau upgrading curve was plotted to evaluate the change in overall flotation selectivity. The zeta potential and particle size distribution were used to characterize the delamination behavior of MT in deionized water at natural pH level. Atomic force microscopy (AFM) (colloidal probe) was used to analyze the interaction force between coal and MT particles. It was found that smaller particles (individual silicate layers or thin packets of layers) with higher zeta potentials appeared gradually, and their volume proportion increased with increasing hydration time. AFM results showed that a monotonous repulsive force was detected consistently throughout the separation distance between coal and these emerging smaller MT particles. The decrease of these MT coating on coal surface was responsible for the higher flotation recovery and better selectivity. A jump-into-contact phenomenon was observed in coal and MT interaction when MT hydrated incompletely. It showed that heterocoagulation between coal and MT occurred and MT coating on the coal surface was responsible for the depression of flotation.
Rocznik
Strony
art. no. 153085
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Engineering Research Center of Ministry of Education for Mine Ecological Restoration,China university of mining & technology, Xuzhou 221116, China
  • School of Environmental Science & Spatial Infomatics, China University of Mining & Technology, Xuzhou 221116, China
  • Engineering Research Center of Ministry of Education for Mine Ecological Restoration,China university of mining & technology, Xuzhou 221116, China
  • School of Environmental Science & Spatial Infomatics, China University of Mining & Technology, Xuzhou 221116, China
autor
  • School of Electrical and Power Engineering, China University of Mining & Technology, Xuzhou 221116, China
  • Engineering Research Center of Ministry of Education for Mine Ecological Restoration,China university of mining & technology, Xuzhou 221116, China
autor
  • Engineering Research Center of Ministry of Education for Mine Ecological Restoration,China university of mining & technology, Xuzhou 221116, China
  • Engineering Research Center of Ministry of Education for Mine Ecological Restoration,China university of mining & technology, Xuzhou 221116, China
Bibliografia
  • ARNOLD, B.J., APLAN, F.F., 1986. The effect of clay slimes on coal flotation, part I: the nature of the clay. Int. J. Miner. Process., 17, 225-242.
  • OATS, W.J., OZDEMIR, O., NGUYEN, A.V., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng., 23, 413-9.
  • ZHAO, S., PENG, Y., 2012. The oxidation of copper sulfide minerals during grinding and their interactions with Clay particles. Powder Technol., 230, 112-7.
  • BAILEY S.W., 1980. Summary of recommendations of AIPEA Nomenclature Committee on clay minerals. American Mineralogist, 65, 1-7.
  • LUCKHAM, P.F., ROSSI, S. 2009. The colloidal and rheological properties of bentonite suspensions. Adv. Colloid Interface. Sci., 82, 43-92.
  • MORRIS, G.E, ZBIK, M.S. 2009. Smectite suspension structural behaviour. Int. J. Miner. Process., 93(1), 20-25.
  • XU, Z., LIU, J., CHOUNG, J.W., ET AL. 2003. Electrokinetic study of clay interactions with coal in flotation. Int. J. Miner. Process., 68(1), 183-196.
  • XING, Y., XU, X., GUI, X., ET AL. 2017. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 195, 284-289.
  • WANG B., PENG Y., 2014. The interaction of clay minerals and saline water in coarse coal flotation. Fuel, 134(9), 326-332.
  • GUI, X., XING, Y., RONG, G. 2016. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technol., 301, 349–55.
  • OZDEMIR, O., TARAN, E., HAMPTON, M.A., KARAKASHEV, S.I. NGUYEN, AV., 2009. Surface chemistry aspects of coal flotation in bore water. Int J Miner Process, 92, 177–83.
  • BAKALARZ, A., DRZYMALA, J., 2013. Interrelation of the Fuerstenau upgrading curves with kinetics of separation. Physicochem Probl Miner Process, 49, 443–51.
  • DUCKER, W.A., SENDEN, T.J., PASHLEY, R.M. 1992. Measurement of forces in liquids using a force microscope. Langmuir, 8, 1831-6.
  • BOWEN, W.R., NIDAL, H., 2009. Atomic force microscopy in process engineering – an introduction to AFM for improved processes and products. Great Britain: Butterworth-Heinemann. p. 3-4
  • BATTERSBY, B.J., SHARP, JCW, WEBB, R.I., ET AL., 1994, Vitrification of aqueous suspensions from a controlled environment for electron microscopy: an improved plunge-cooling device. J. Microsc., 176, 110-20
  • GUPTA, V., HAMPTON, M.A., STOKES, J.R., ET AL. 2011. Particle interactions in kaolinite suspensions and corresponding aggregate structures. J. Colloid Interface Sci., 359(1), 95-103
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82afc175-c4fe-4536-9c5a-cf7e529228da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.