PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The intima with early atherosclerotic lesions is load-bearing component of human thoracic aorta

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to evaluate the mechanical properties of the adventitia, media, and especially intima of the human thoracic aortic wall in the early stages of atherosclerosis (stage I to III according to the Stary's classification). Histological and immunohistochemical techniques were used to evaluate the severity of atherosclerosis and the correctness of separation of the respective layers. Circumferential specimens of the adventitia, media, and intima (n = 193) were prepared from 27 arteries. The mechanical properties, i.e. the ultimate tensile strength, the maximum strain, and the maximum tangential elastic moduli, were determined in uniaxial tensile test and presented as a median (Me). The tensile strength of the intima (Me = 105 kPa) is comparable to the media (Me = 123 kPa) and lower than for the adventitia (Me = 808.5 kPa). The intima also undergoes the lowest maximum strain (Me = 0.008), and its elastic modulus (Me = 11510 kPa) is significantly higher compared to the media (Me = 5280 kPa). Therefore, presented results indicate that even in the early stages of atherosclerotic development the intima takes part in the process of mechanical loads bearing.
Twórcy
autor
  • Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Lukasiewicza 7/9, 50-371 Wroclaw. Fax: +48 71 322 76 45
autor
  • Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Lukasiewicza 7/9, 50-371 Wroclaw. Fax: +48 71 322 76 45
autor
  • Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
  • Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
  • Wrovasc – Integrated Cardiovascular Centre, Regional Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
autor
  • Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Lukasiewicza 7/9, 50-371 Wroclaw. Fax: +48 71 322 76 45
Bibliografia
  • [1] Hanuza J, Maczka M, Gąsior-Głogowska M, Komorowska M, Kobielarz M, Będziński R, et al. FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress. J Raman Spectrosc 2010;41(10):1163–9.
  • [2] Sokolis DP. Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue. Biomech Model Mechanobiol 2013;12:431–51.
  • [3] Rhodin JAG. Architecture of the vessel wall. In: Bohr DF, Somlyo AD, Sparks HV, editors. Handbook of physiology, the cardiovascular system. Bethesda, MD: American Physiological Society; 2011. p. 1–31.
  • [4] O'Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R, et al. The three-dimensional micro-and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol 2008;27 (3):171–81.
  • [5] Kobielarz M, Chwiłkowska A, Turek A, Maksymowicz K, Marciniak M. Influence of selective digestion of elastin and collagen on mechanical properties of human aortas. Acta Bioeng Biomech 2015;17(2):55–62.
  • [6] Xie J, Zhou J, Fung Y. Bending of blood vessel wall: stress– strain laws of the intima-media and adventitia layers. J Biomech Eng 1995;117:136–45.
  • [7] Schulze-Bauer C, Regitinig P, Holzapfel GA. Mechanics of the human femoral adventitia including high-pressure response. Am J Physiol 2002;282:2427–40.
  • [8] Holzapfel GA. Collagen in arterial walls: biomechanical aspects. In: Fratzl P, editor. Collagen structure and mechanics. LLC; 2008. p. 285–324.
  • [9] Holzapfel GA, Gasser T, Ogden R. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 2000;61:1–48.
  • [10] Holzapfel G, Gasser T, Stadler M. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 2002;21:441–63.
  • [11] Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater 2012;12:93– 106.
  • [12] Schulze-Bauer ChAJ, Morth Ch, Holzapfel GA. J Biomech Eng 2003;125(3):395–406.
  • [13] Holzapfel GA, Sommer G, Gasser CT, Regitnig P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 2005;289:H2048–5.
  • [14] Pena JA, Martinez MA, Pena E. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J Mech Behav Biomed Mater 2015;50:55–69.
  • [15] Stary HC. Atlas of atherosclerosis progression and regression on CD-ROM. 2nd ed. 2003, New York.
  • [16] Bobryshev YV, Lord RS, Warren BA. Calcified deposit formation in intimal thickenings of the human aorta. Atherosclerosis 1995;118:9–21.
  • [17] Stary HC. Natural history of calcium deposits in atherosclerosis progression and regression. Cardiol J 2000;89. II/28–II/35.
  • [18] Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis – a report from the Committee on Vascular-Lesions of the Council on Arteriosclerosis, American-Heart-Association. Circulation 1994;89:2462–78.
  • [19] Marra SP, Daghlian CP, Fillinger MF, Kennedy FE. Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater 2006;2:515–20.
  • [20] Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 2000;20:1177–8.
  • [21] Kot M, Kobielarz M, Maksymowicz K. Assessment of mechanical properties of arterial calcium deposition. Trans FAMENA 2011;35:49–56.
  • [22] Akyildiz Ali C, Speelman L, Gijsen Frank JH. Mechanical properties of human atherosclerotic intima tissue. J Biomech 2014;47:773–83.
  • [23] Becker A, Epple M, Muller KM, Schmitz J. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical and ultrastructural methods. J Inorg Biochem 2004;98:2032–8.
  • [24] Kobielarz M, Jankowski L. Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension. J Theor Appl Mech 2013;51:949–58.
  • [25] Holzapfel G, Ogden R. Biomechanics of soft tissue in cardiovascular systems. Udine: Springer-Verlag Wien GmbH; 2003.
  • [26] Plenz G, Deng MC, Robenek H, Volker W. Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 2003;166:1–11.
  • [27] Topoleski DT, Salunke NV, Humphrey JD, Mergner WJ. Composition and history-dependent radial compressive behavior of human atherosclerotic plaque. J Biomed Mater Res 1997;35:117–27.
  • [28] Sommer G, Regitnig P, Költringer L, Holzapfel G. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am J Physiol Heart Circ Physiol 2010;298:H898–912.
  • [29] Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial direction. J Biomech 2009;42:2535–9.
  • [30] Fung YC. Biomechanics, mechanical properties of living tissues. 2nd ed. New York: Springer-Verlag; 1993.
  • [31] Gąsior-Głogowska M, Komorowska M, Hanuza J, Ptak M, Kobielarz M. Structural alteration of collagen fibers – spectroscopic and mechanical studies. Acta Bioeng Biomech 2011;12:55–62.
  • [32] Armentano R, Levenson J, Barra J, Fischer E, Breitbart G, Pichel R, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol 1991;260:H1870–7.
  • [33] Rachev A, Taylor R, Vito R. Calculation of the outcomes of remodeling of arteries subjected to sustained hypertension using a 3D two-layered model. Ann Biomed Eng 2013;41:1539–53.
  • [34] Monir E, Yamada H, Sakata N. Finite element modelling of the common carotid artery in the elderly with physiological intimal thickening using layer-specific stress-released geometries and nonlinear elastic properties. Comput Methods Biomech Biomed Eng 2016;19:1286–96.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82ac7437-b5fe-4c9a-aeaf-a0a1ef050bb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.