PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills. It is one of the leading types of dementia for persons aged above 65 worldwide. In order to achieve accurate and timely diagnosis, and for detection of AD in its early stages, numerous Artificial Intelligence (AI) based Computer-aided Diagnostic (CAD) approaches have been proposed using data from brain imaging. In this paper, we review the recent application of AI based CAD systems on AD and its stages, with a particular focus on the use of structural MRI due to its cost effectiveness and lack of ionizing radiation. We will review important factors of different AI techniques pertinent to AD, summarize contributions from different research groups, critically discuss challenges involved and propose directions for future research. Ultimately, it would be ideal for development of a diagnostic framework that could be applicable to not only AD, but to different types of dementia as well in the future.
Twórcy
autor
  • Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372, Singapore
  • MOH Holdings Pte Ltd, 1 Maritime Square, S099253, Singapore
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Clementi 599491, Singapore; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
  • Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Block 1, Level 4, Room 08, 8 Somapah Road, S487372, Singapore
Bibliografia
  • [1] National Institute On Aging, What Is Dementia? Symptoms, Types, and Diagnosis, https://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis, note = [Online] Accessed: 2020-09-19.
  • [2] National Institute On Aging, What Is Alzheimer’s Disease?, https://www.nia.nih.gov/health/what-alzheimersdisease#::text=Alzheimer’s note = [Online] Accessed: 2020-09-19.
  • [3] Maslow K et al. 2010 alzheimer’s disease facts and figures. Alzheimer’s Dementia J Alzheimer’s Assoc 2010;6(2):158–94. https://doi.org/10.1016/j.jalz.2010.01.009.
  • [4] Alzheimer’s Association, 2019 alzheimer’s disease facts and figures report, https://www.alz.org/media/documents/alzheimers-facts-and-figures-2019-r.pdf, accessed: 2020-01-15.
  • [5] Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, Rueckert D, Montana G, Initiative ADN, et al. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in alzheimer’s disease. Neuroimage 2012;60(1):700–16. https://doi.org/10.1016/j.neuroimage.2011.12.029.
  • [6] Alzhemer’s Disease International, World Alzheimer Report 2019, https://www.alz.co.uk/research/WorldAlzheimerReport2019.pdf, [Online] Accessed: 2020-03-9.
  • [7] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack Jr CR, Kaye J, Montine TJ, et al. Toward defining the preclinical stages of alzheimer’s disease: Recommendations from the national institute on agingalzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s Dementia 2011;7(3):280–92. https://doi.org/10.1016/j.jalz.2011.03.003.
  • [8] Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, et al. Mild cognitive impairment. The Lancet 2006;367 (9518):1262–70. https://doi.org/10.1016/S0140-6736(06)68542-5.
  • [9] Michaud TL, Su D, Siahpush M, Murman DL. The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes. Dementia Geriatric Cogni Disorders Extra 2017;7(1):15–29. https://doi.org/10.1159/000452486.
  • [10] Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 2009;119(4):252–65. https://doi.org/10.1111/j.1600-0447.2008.01326.x.
  • [11] Folstein MF, Folstein SE, McHugh PR. ‘‘mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
  • [12] Morris JC. The Clinical Dementia Rating (CDR). Neurology 1993;43(11):2412–2412-a. doi:10.1212/WNL.43.11.2412-a.
  • [13] Kasban H, El-Bendary M, Salama D. A comparative study of medical imaging techniques. Int J Inf Sci Intell Syst 2015;4 (2):37–58.
  • [14] Wright A. Brain scanning techniques (ct, mri, fmri, pet, spect, dti, dot). Cerebra Positively Different 2010:1–14.
  • [15] Tong T, Gao Q, Guerrero R, Ledig C, Chen L, Rueckert D. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease. IEEE Trans Biomed Eng 2017;64:155–65. https://doi.org/10.1109/TBME.2016.2549363.
  • [16] Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D. Structural brain imaging in alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 2018;8(1):1–16. https://doi.org/10.1038/s41598-018-29295-9.
  • [17] Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, et al. Tracking pathophysiological processes in alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013;12(2):207–16. https://doi.org/10.1016/S1474-4422(12)70291-0.
  • [18] Yu Q, Mai Y, Ruan Y, Luo Y, Zhao L, Fang W, Cao Z, Li Y, Liao W, Xiao S, et al. An mri-based strategy for differentiation of frontotemporal dementia and alzheimer’s disease. Alzheimer’s Res Therapy 2021;13(1):1–12. https://doi.org/10.1186/s13195-020-00757-5.
  • [19] Kok C, Jahmunah V, Oh SL, Zhou X, Gururajan R, Tao X, Cheong KH, Gururajan R, Molinari F, Acharya UR. Automated prediction of sepsis using temporal convolutional network. Comput Biol Med 2020;127. https://doi.org/10.1016/j.compbiomed.2020.103957 103957.
  • [20] Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR. Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 2019;100 . https://doi.org/10.1016/j.artmed.2019.07.006 101698.
  • [21] Lin AX, Ho AFW, Cheong KH, Li Z, Cai W, Chee ML, Ng YY, Xiao X, Ong MEH. Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction. Int J Environ Res Public Health 2020;17(11):4179. https://doi.org/10.3390/ijerph17114179.
  • [22] Ho AFW, To BZYS, Koh JM, Cheong KH. Forecasting hospital emergency department patient volume using internet search data. IEEE Access 2019;7:93387–95. https://doi.org/10.1109/ACCESS.2019.2928122.
  • [23] Cheong KH, Ngiam NJ, Morgan GG, Pek PP, Tan BY-Q, Lai JW, Koh JM, Ong MEH, Ho AFW. Acute health impacts of the southeast asian transboundary haze problem—a review. Int J Environ Res Public Health 2019;16(18):3286. https://doi.org/10.3390/ijerph16183286.
  • [24] Ho AFW, Zheng H, Cheong KH, En WL, Pek PP, Zhao X, Morgan GG, Earnest A, Tan BYQ, Ng YY, et al. The relationship between air pollution and all-cause mortality in singapore. Atmosphere 2020;11(1):9. https://doi.org/10.3390/atmos11010009.
  • [25] Cheong KH, Poeschmann S, Lai JW, Koh JM, Acharya UR, Yu SCM, Tang KJW. Practical automated video analytics for crowd monitoring and counting. IEEE Access 2019;7:183252–61. https://doi.org/10.1109/ACCESS.2019.2958255.
  • [26] Tanveer M, Richhariya B, Khan R, Rashid A, Khanna P, Prasad M, Lin C. Machine learning techniques for the diagnosis of alzheimer’s disease: a review. ACM Trans Multimed Comput Commun Appl (TOMM) 2020;16(1s):1–35. https://doi.org/10.1145/3344998.
  • [27] Siuly S, Zhang Y. Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci Eng 2016;1(2):54–64. https://doi.org/10.1007/s41019-016-0011-3.
  • [28] Leandrou S, Petroudi S, Kyriacou PA, Reyes-Aldasoro CC, Pattichis CS. Quantitative mri brain studies in mild cognitive impairment and alzheimer’s disease: a methodological review. IEEE Rev Biomed Eng 2018;11:97–111. https://doi.org/10.1109/RBME.2018.2796598.
  • [29] Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng 2018;12:19–33. https://doi.org/10.1109/RBME.2018.2886237.
  • [30] Liu S, Yadav C, Fernandez-Granda C, Razavian N. On the design of convolutional neural networks for automatic detection of alzheimer’s disease. In: Machine Learning for Health Workshop, PMLR; 2020. p. 184–201.
  • [31] Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res 2019;57:147–59. https://doi.org/10.1016/j.cogsys.2018.12.015.
  • [32] Nguyen DT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. Hybrid multivariate pattern analysis combined with extreme learning machine for alzheimer’s dementia diagnosis using multi-measure rs-fmri spatial patterns. PloS One 2019;14(2) . https://doi.org/10.1371/journal.pone.0212582 e0212582.
  • [33] Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J, Yuan T-F. Detection of subjects and brain regions related to alzheimer’s disease using 3d mri scans based on eigenbrain and machine learning. Front Comput Neurosci 2015;9:66. https://doi.org/10.3389/fncom.2015.00066.
  • [34] Kishore P, Kumari CU, Kumar M, Pavani T. Detection and analysis of alzheimer’s disease using various machine learning algorithms, Mater Tod Proc. doi:10.1016/j.matpr.2020.07.645.
  • [35] Casanova R, Hsu F-C, Sink KM, Rapp SR, Williamson JD, Resnick SM, Espeland MA, Initiative ADN, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PloS One 2013;8(11). https://doi.org/10.1371/journal.pone.0077949.
  • [36] Coupé P, Eskildsen SF, Manjón JV, Fonov VS, Collins DL. Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to alzheimer’s disease. NeuroImage 2012;59:3736–47. https://doi.org/10.1016/j.neuroimage.2011.10.080.
  • [37] Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL, Initiative ADN, et al. Prediction of alzheimer’s disease in subjects with mild cognitive impairment from the adni cohort using patterns of cortical thinning. Neuroimage 2013;65:511–21. https://doi.org/10.1016/j.neuroimage.2012.09.058.
  • [38] Diciotti S, Ginestroni A, Bessi V, Giannelli M, Tessa C, Bracco L, Mascalchi M, Toschi N. Identification of mild alzheimer’s disease through automated classification of structural mri features. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE; 2012. p. 428–31. doi:10.1109/EMBC.2012.6345959.
  • [39] Ramaniharan AK, Manoharan SC, Swaminathan R. Laplace beltrami eigen value based classification of normal and alzheimer mr images using parametric and non-parametric classifiers. Expert Syst Appl 2016;59(C):208–16. https://doi.org/10.1016/j.eswa.2016.04.029.
  • [40] Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR, N.R.C. for Dementia, A.D.N. Initiative, Early diagnosis of alzheimer’s disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of mri t1 brain images. PloS One 2019;14(10): e0222446. doi:10.1371/journal.pone.0222446.
  • [41] Vaithinathan K, Parthiban L, F. the Alzheimer’s Disease Neuroimaging Initiative, A novel texture extraction technique with t1 weighted mri for the classification of alzheimer’s disease. J Neurosci Methods 2019;318:84–99. doi:10.1016/j.jneumeth.2019.01.011.
  • [42] Wei JKE, Jahmunah V, Pham T-H, Oh SL, Ciaccio EJ, Acharya UR, Yeong CH, Fabell MKM, Rahmat K, Vijayananthan A, et al. Automated detection of alzheimer’s disease using bidirectional empirical model decomposition. Pattern Recognit Lett. doi:10.1016/j.patrec.2020.03.014.
  • [43] Gerardin E, Chételat G, Chupin M, Cuingnet R, Desgranges B, Kim H-S, Niethammer M, Dubois B, Lehéricy S, Garnero L, et al. Multidimensional classification of hippocampal shape features discriminates alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 2009;47(4):1476–86. https://doi.org/10.1016/j.neuroimage.2009.05.036.
  • [44] Plant C, Teipel SJ, Oswald A, Böhm C, Meindl T, Mourao-Miranda J, Bokde AW, Hampel H, Ewers M. Automated detection of brain atrophy patterns based on mri for the prediction of alzheimer’s disease. Neuroimage 2010;50(1):162–74. https://doi.org/10.1016/j.neuroimage.2009.11.046.
  • [45] Westman E, Simmons A, Zhang Y, Muehlboeck J-S, Tunnard C, Liu Y, Collins L, Evans A, Mecocci P, Vellas B, et al. Multivariate analysis of mri data for alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 2011;54(2):1178–87. https://doi.org/10.1016/j.neuroimage.2010.08.044.
  • [46] Pachauri D, Hinrichs C, Chung MK, Johnson SC, Singh V. Topology-based kernels with application to inference problems in alzheimer’s disease. IEEE Trans Med Imag 2011;30:1760–70. https://doi.org/10.1109/TMI.2011.2147327.
  • [47] Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lötjönen J, Initiative ADN, et al. Multi-method analysis of mri images in early diagnostics of alzheimer’s disease. PloS One 2011;6(10) . https://doi.org/10.1371/journal.pone.0025446 e25446.
  • [48] Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M-O, Chupin M, Benali H, Colliot O. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 2011;56(2):766–81. https://doi.org/10.1016/j.neuroimage.2010.06.013.
  • [49] Cho Y, Seong J-K, Jeong Y, Shin SY. Individual subject classification for alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage 2012;59(3):2217–30. https://doi.org/10.1016/j.neuroimage.2011.09.085.
  • [50] Westman E, Muehlboeck J-S, Simmons A. Combining mri and csf measures for classification of alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 2012;62(1):229–38. https://doi.org/10.1016/j.neuroimage.2012.04.056.
  • [51] Aguilar C, Westman E, Muehlboeck J-S, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Spenger C, et al. Different multivariate techniques for automated classification of mri data in alzheimer’s disease and mild cognitive impairment. Psychiatr Res Neuroimag 2013;212(2):89–98. https://doi.org/10.1016/j.pscychresns.2012.11.005.
  • [52] Wee C-Y, Yap P-T, Shen D, Initiative ADN. Prediction of alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Human Brain Map 2013;34(12):3411–25. https://doi.org/10.1002/hbm.22156.
  • [53] Ahmed OB, Benois-Pineau J, Allard M, Amar CB, Catheline G. Classification of alzheimer’s disease subjects from mri using hippocampal visual features. Multimed Tools Appl 2014;74:1249–66. https://doi.org/10.1007/s11042-014-2123-y.
  • [54] Zhou Q, Goryawala M, Cabrerizo M, Wang J, Barker W, Loewenstein DA, Duara R, Adjouadi M. An optimal decisional space for the classification of alzheimer’s disease and mild cognitive impairment. IEEE Trans Biomed Eng 2014;61(8):2245–53. https://doi.org/10.1109/TBME.2014.2310709.
  • [55] Farhan S, Fahiem MA, Tauseef H. An ensemble-of-classifiers based approach for early diagnosis of alzheimer’s disease: classification using structural features of brain images. Hindawi 2014. https://doi.org/10.1155/2014/862307.
  • [56] Min R, Cheng J, Price T, Wu G, Shen D. Maximum-margin based representation learning from multiple atlases for alzheimer’s disease classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2014. p. 212–9.
  • [57] Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D, Initiative ADN, et al. Multiple instance learning for classification of dementia in brain mri. Med Image Anal 2014;18(5):808–18. https://doi.org/10.1016/j.media.2014.04.006.
  • [58] Chyzhyk D, Savio A, Graña M. Evolutionary elm wrapper feature selection for alzheimer’s disease cad on anatomical brain mri. Neurocomputing 2014;128:73–80. https://doi.org/10.1016/j.neucom.2013.01.065.
  • [59] Bron EE, Smits M, Niessen WJ, Klein S. Feature selection based on the svm weight vector for classification of dementia. IEEE J Biomed Health Inf 2015;19(5):1617–26. https://doi.org/10.1109/JBHI.2015.2432832.
  • [60] Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects. NeuroImage 2015;104:398–412. https://doi.org/10.1016/j.neuroimage.2014.10.002.
  • [61] Cheng B, Liu M, Zhang D, Munsell BC, Shen D. Domain transfer learning for mci conversion prediction. IEEE Trans Bio-med Eng 2015;62(7):1805–17. https://doi.org/10.1109/TBME.2015.2404809.
  • [62] Zhang Y, Wang S, Phillips P, Dong Z, Ji G, Yang J. Detection of alzheimer’s disease and mild cognitive impairment based on structural volumetric mr images using 3d-dwt and wtaksvm trained by psotvac. Biomed Signal Process Control 2015;21:58–73. https://doi.org/10.1016/j.bspc.2015.05.014.
  • [63] Liu M, Zhang D, Shen D. Relationship induced multitemplate learning for diagnosis of alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imag 2016;35 (6):1463–74. https://doi.org/10.1109/TMI.2016.2515021.
  • [64] Tohka J, Moradi E, Huttunen H, Initiative ADN, et al. Comparison of feature selection techniques in machine learning for anatomical brain mri in dementia. Neuroinformatics 2016;14(3):279–96. https://doi.org/10.1007/s12021-015-9292-3.
  • [65] Beheshti I, Demirel H, Initiative ADN, et al. Feature-ranking-based alzheimer’s disease classification from structural mri. Magn Reson Imag 2016;34(3):252–63. https://doi.org/10.1016/j.mri.2015.11.009.
  • [66] Hu K, Wang Y, Chen K, Hou L, Zhang X. Multi-scale features extraction from baseline structure mri for mci patient classification and ad early diagnosis. Neurocomputing 2016;175:132–45. https://doi.org/10.1016/j. neucom.2015.10.043.
  • [67] Liu M, Zhang D, Adeli E, Shen D. Inherent structure-based multiview learning with multitemplate feature representation for alzheimer’s disease diagnosis. IEEE Trans Biomed Eng 2015;63(7):1473–82. https://doi.org/10.1109/TBME.2015.2496233.
  • [68] Kim J, Lee B. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural t1 mri features. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2017. p. 1990–3. doi:10.1109/embc.2017.8037241.
  • [69] Beheshti I, Demirel H, Matsuda H, Initiative ADN, et al. Classification of alzheimer’s disease and prediction of mild cognitive impairment-to-alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput Biol Med 2017;83:109–19. https://doi.org/10.1016/j.compbiomed.2017.02.011.
  • [70] Liu J, Wang J, Hu B, Wu F-X, Pan Y. Alzheimer’s disease classification based on individual hierarchical networks constructed with 3-d texture features. IEEE Trans Nanobiosci 2017;16(6):428–37. https://doi.org/10.1109/TNB.2017.2707139.
  • [71] Lama RK, Gwak J, Park J-S, Lee S-W. Diagnosis of alzheimer’s disease based on structural mri images using a regularized extreme learning machine and pca features. J Healthcare Eng 2017. https://doi.org/10.1155/2017/5485080.
  • [72] Nanni L, Lumini A, Zaffonato N. Ensemble based on static classifier selection for automated diagnosis of mild cognitive impairment. J Neurosci Methods 2018;302:42–6. https://doi.org/10.1016/j.jneumeth.2017.11.002.
  • [73] Sørensen L, Nielsen M, Initiative ADN, et al. Ensemble support vector machine classification of dementia using structural mri and mini-mental state examination. J Neurosci Methods 2018;302:66–74. https://doi.org/10.1016/j.jneumeth.2018.01.003.
  • [74] Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A, Initiative ADN, et al. Predicting conversion from mci to ad by integrating rs-fmri and structural mri. Comput Biol Med 2018;102:30–9. https://doi.org/10.1016/j.compbiomed.2018.09.004.
  • [75] Shaikh TA, Ali R. Automated atrophy assessment for alzheimer’s disease diagnosis from brain mri images. Magn Reson Imag 2019;62:167–73. https://doi.org/10.1016/j.mri.2019.06.019.
  • [76] Popuri K, Ma D, Wang L, Beg MF. Using machine learning to quantify structural mri neurodegeneration patterns of alzheimer’s disease into dementia score: Independent validation on 8,834 images from adni, aibl, oasis, and miriad databases. Human Brain Map 2020;41(14):4127–47. https://doi.org/10.1002/hbm.25115.
  • [77] Zhang Y, Wang S, Xia K, Jiang Y, Qian P, Initiative ADN, et al. Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion. Inf Fusion 2021;66:170–83. https://doi.org/10.1016/J.INFFUS.2020.09.002.
  • [78] Bi X, Jiang Q, Sun Q, Shu Q, Liu Y. Analysis of alzheimer’s disease based on the random neural network cluster in fmri. Front Neuroinf 2018;12:60. https://doi.org/10.3389/fninf.2018.00060.
  • [79] Li Q, Wu X, Xu L, Chen K, Yao L, Initiative ADN, et al. Classification of alzheimer’s disease, mild cognitive impairment, and cognitively unimpaired individuals using multi-feature kernel discriminant dictionary learning. Front Comput Neurosci 2018;11:117. https://doi.org/10.3389/fncom.2017.00117.
  • [80] Challis E, Hurley P, Serra L, Bozzali M, Oliver S, Cercignani M. Gaussian process classification of alzheimer’s disease and mild cognitive impairment from resting-state fmri. NeuroImage 2015;112:232–43. https://doi.org/10.1016/j.neuroimage.2015.02.037.
  • [81] Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, Rajinikanth V, Yeong CH. Automated detection of alzheimer’s disease using brain mri images–a study with various feature extraction techniques. J Med Syst 2019;43(9):302. https://doi.org/10.1007/s10916-019-1428-9.
  • [82] Islam J, Zhang Y. Brain mri analysis for alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inf 2018;5(2):2. https://doi.org/10.1186/s40708-018-0080-3.
  • [83] Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ. Corpus callosum shape changes in early alzheimer’s disease: an mri study using the oasis brain database. Brain Struct Funct 2014;219(1):343–52. https://doi.org/10.3233/JAD-131526.
  • [84] Zhang J, Yu C, Jiang G, Liu W, Tong L. 3d texture analysis on mri images of alzheimer’s disease. Brain Imag Behav 2012;6(1):61–9. https://doi.org/10.1007/s11682-011-9142-3.
  • [85] Lee S, Kim KW, A.D.N. Initiative, Associations between texture of t1-weighted magnetic resonance imaging and radiographic pathologies in alzheimer’s disease. Eur J Neurol doi:10.1111/ene.14609.
  • [86] Schuff N, Woerner N, Boreta L, Kornfield T, Shaw L, Trojanowski J, Thompson P, Jack Jr C, Weiner M, Initiative ADN. Mri of hippocampal volume loss in early alzheimer’s disease in relation to apoe genotype and biomarkers. Brain 2009;132(4):1067–77. https://doi.org/10.1093/brain/awp007.
  • [87] Chupin M, Chetelat G, Lemieux L, Dubois B, Garnero L, Benali H, Eustache F, Lehericy S, Desgranges B, Colliot O. Fully automatic hippocampus segmentation discriminates between early alzheimer’s disease and normal aging. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE; 2008. p. 97–100. doi:10.1109/ISBI.2008.4540941.
  • [88] Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, Parikshak N, Toga AW, Jack Jr CR, Schuff N, et al. Automated mapping of hippocampal atrophy in 1-year repeat mri data from 490 subjects with alzheimer’s disease, mild cognitive impairment, and elderly controls. Neuroimage 2009;45(1):S3–S15. https://doi.org/10.1016/j.neuroimage.2008.10.043.
  • [89] Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 2011;56(1):212–9. https://doi.org/10.1016/j.neuroimage.2011.01.050.
  • [90] Li Y, Liu Y, Wang P, Wang J, Xu S, Qiu M, A.D.N.I. (ADNI), et al., Dependency criterion based brain pathological age estimation of alzheimer’s disease patients with mr scans. Biomed Eng Online 2017;16(1):50. doi:10.1186/s12938-017-0342-y.
  • [91] Liu Y, Julkunen V, Paajanen T, Westman E, Wahlund L-O, Aitken A, Sobow T, Mecocci P, Tsolaki M, Vellas B, et al. Education increases reserve against alzheimer’s disease—evidence from structural mri analysis. Neuroradiology 2012;54(9):929–38. https://doi.org/10.1007/s00234-012-1005-0.
  • [92] Apostolova LG, Hwang KS, Kohannim O, Avila D, Elashoff D, Jack Jr CR, Shaw L, Trojanowski JQ, Weiner MW, Thompson PM, et al. Apoe4 effects on automated diagnostic classifiers for mild cognitive impairment and alzheimer’s disease. NeuroImage: Clinical 2014;4:461–72. https://doi.org/10.1016/j.nicl.2013.12.012.
  • [93] Ahmed OB, Mizotin M, Benois-Pineau J, Allard M, Catheline G, Amar CB, Initiative ADN, et al. Alzheimer’s disease diagnosis on structural mr images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex. Comput Med Imag Graph 2015;44:13–25. https://doi.org/10.1016/j.compmedimag.2015.04.007.
  • [94] Huang L, Pan Z, Lu H, et al., Automated diagnosis of alzheimer’s disease with degenerate svm-based adaboost. In: 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2. IEEE; 2013. p. 298–301. doi:10.1109/IHMSC.2013.219.
  • [95] Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 2003;51(2):181–207. https://doi.org/10.1023/A:1022859003006.
  • [96] Rokach L. Ensemble-based classifiers. Artif Intell Rev 2010;33(1–2):1–39. https://doi.org/10.1007/s10462-009-9124-7.
  • [97] Bron EE, Smits M, Niessen WJ, Klein S. Feature selection based on the svm weight vector for classification of dementia. IEEE J Biomed Health Inf 2015;19(5):1617–26. https://doi.org/10.1109/JBHI.2015.2432832.
  • [98] Jiang W, Zavesky E, Chang S-F, Loui A. Cross-domain learning methods for high-level visual concept classification. In: 2008 15th IEEE International Conference on Image Processing. IEEE; 2008. p. 161–4. doi:10.1109/ICIP.2008.4711716.
  • [99] Ahmed OB, Benois-Pineau J, Allard M, Catheline G, Amar CB, Initiative ADN, et al. Recognition of alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning. Neurocomputing 2017;220:98–110. https://doi.org/10.1016/j.neucom.2016.08.041.
  • [100] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.
  • [101] Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221–48. https://doi.org/10.1146/annurev-bioeng-071516-044442.
  • [102] Jo T, Nho K, Saykin AJ. Deep learning in alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019;11:220. https://doi.org/10.3389/fnagi.2019.00220.
  • [103] Gupta A, Ayhan M, Maida A. Natural image bases to represent neuroimaging data. In: International Conference on Machine Learning; 2013. p. 987–94.
  • [104] Brosch T, Tam R, A.D.N. Initiative, et al. Manifold learning of brain mris by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2013. p. 633–40. doi:10.1007/978-3-642-40763-5_78.
  • [105] Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18(7):1527–54. https://doi.org/10.1162/neco.2006.18.7.1527.
  • [106] Payan A, Montana G. Predicting alzheimer’s disease: a neuroimaging study with 3d convolutional neural networks. arXiv preprint arXiv:1502.02506.
  • [107] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.
  • [108] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211–52.
  • [109] Farooq A, Anwar S, Awais M, Rehman S. A deep cnn based multi-class classification of alzheimer’s disease using mri. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE; 2017. p. 1–6. https://doi.org/10.1109/IST.2017.8261460.
  • [110] Korolev S, Safiullin A, Belyaev M, Dodonova Y. Residual and plain convolutional neural networks for 3d brain mri classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE; 2017. p. 835–8. doi:10.1109/ISBI.2017.7950647.
  • [111] Hosseini-Asl E, Ghazal M, Mahmoud A, Aslantas A, Shalaby AM, Casanova MF, Barnes G, Gimel’farb GL, Keynton RS, El-Baz AS. Alzheimer’s disease diagnostics by a 3d deeply supervised adaptable convolutional network. Front Biosci 2018;23:584–96. https://doi.org/10.2741/4606.
  • [112] Hosseini-Asl E, Keynton R, El-Baz A. Alzheimer’s disease diagnostics by adaptation of 3d convolutional network. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016. p. 126–30. https://doi.org/10.1109/ICIP.2016.7532332.
  • [113] Wang S-H, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 2018;42(5):85. https://doi.org/10.1007/s10916-018-0932-7.
  • [114] Suk H-I, Lee S-W, Shen D. Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis. NeuroImage 2014;101:569–82. https://doi.org/10.1016/j.neuroimage.2014.06.077.
  • [115] Sarraf S, Tofighi G. Classification of alzheimer’s disease structural mri data by deep learning convolutional neural networks. arXiv preprint arXiv:1607.06583.
  • [116] Lian C, Liu M, Zhang J, Shen D. Hierarchical fully convolutional network for joint atrophy localization and alzheimer’s disease diagnosis using structural mri. IEEE Trans Pattern Anal Mach Intell. doi:10.1109/TPAMI.2018.2889096.
  • [117] Basaia S, Agosta F,Wagner L, Canu E, Magnani G, Santangelo R, Filippi M, A.D.N. Initiative, et al., Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks. NeuroImage: Clinical 2019;21:101645. doi:10.1016/j.nicl.2018.101645.
  • [118] Oh K, Chung Y-C, Kim KW, Kim W-S, Oh I-S. Classification and visualization of alzheimer’s disease using volumetric convolutional neural network and transfer learning. Sci Rep 2019;9(1):1–16. https://doi.org/10.1038/s41598-019-54548-6.
  • [119] Cho J, Lee K, Shin E, Choy G, Do S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?. arXiv preprint arXiv:1511.06348.
  • [120] Castro AP, Fernandez-Blanco E, Pazos A, Munteanu CR. Automatic assessment of alzheimer’s disease diagnosis based on deep learning techniques. Comput Biol Med 2020. https://doi.org/10.1016/j.compbiomed.2020.103764 103764.
  • [121] Ebrahimi-Ghahnavieh A, Luo S, Chiong R. Transfer learning for alzheimer’s disease detection on mri images. In: 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE; 2019. p. 133–8. doi:10.1109/ICIAICT.2019.8784845.
  • [122] Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, Mehmood Z. A deep learning approach for automated diagnosis and multi-class classification of alzheimer’s disease stages using resting-state fmri and residual neural networks. J Med Syst 2020;44(2):37. https://doi.org/10.1007/s10916-019-1475-2.
  • [123] Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imag 2016;35(5):1285–98. https://doi.org/10.1109/TMI.2016.2528162.
  • [124] Lazli L, Boukadoum M, Mohamed OA. A survey on computer-aided diagnosis of brain disorders through mri based on machine learning and data mining methodologies with an emphasis on alzheimer disease diagnosis and the contribution of the multimodal fusion. Appl Sci 2020;10 (5):1894. https://doi.org/10.3390/app10051894.
  • [125] Spasov S, Passamonti L, Duggento A, Lio` P, Toschi N, Initiative ADN, et al. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease. Neuroimage 2019;189:276–87. https://doi.org/10.1016/j.neuroimage.2019.01.031.
  • [126] Akl A, Taati B, Mihailidis A. Autonomous unobtrusive detection of mild cognitive impairment in older adults. IEEE Trans Biomed Eng 2015;62(5):1383–94. https://doi.org/10.1109/TBME.2015.2389149.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82aa7f22-3f03-4cc8-a5e8-77ebfef1c2be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.