Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Obtaining the characteristics at a characteristic point of the outputs is a key step to the geomagnetic attitude measurement method of the spinning projectile. However, actual outputs usually have some noise that causes the characteristic points to deviate from the theoretical position or produce multiple fake characteristic points, resulting in the increase of solution error and even the failure of solution. In addition, the coning motion and inaccurate initial alignment of the spinning projectile increase the number of unknown parameters and the computational complexity. In this study, several improved particle swarm optimization strategies are proposed. The actual outputs are fitted to the geomagnetic output equations under the coning motion, and the supervised learning effect of each strategy is analysed and compared. The algorithm can be flexibly adjusted according to different needs in actual use by selecting appropriate strategies, which has a wide applicability in data fitting.
Czasopismo
Rocznik
Tom
Strony
451--464
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Shanghai Electro-Mechanical Engineering Institute, Shanghai, China
autor
- Shanghai Electro-Mechanical Engineering Institute, Shanghai, China
autor
- Shanghai Electro-Mechanical Engineering Institute, Shanghai, China
autor
- Shanghai Electro-Mechanical Engineering Institute, Shanghai, China
autor
- Shanghai Electro-Mechanical Engineering Institute, Shanghai, China
autor
- Nanjing University of Science and Technology, School of Mechanical Engineering, Nanjing, China
autor
- Nantong University, School of Information Science and Technology, Nantong, China
Bibliografia
- [1] He, Z., Bu, X., Yang, H., & Song, Y. (2021). Interacting multiple model cubature Kalman filter for geomagnetic/infrared projectile attitude measurement. Measurement, 174(1), 109077. https://doi.org/10.1016/j.measurement.2021.109077
- [2] Wang, W., Meng, G., Liu, J., Wang, M., Gao, Z., Mu, L., & Zhang, S. (2018, December). Integrated navigation method based on inertial and geomagnetic information fusion. Optical Sensing and Imaging Technologies and Applications (Vol. 10846, pp. 278-292). SPIE. https://doi.org/10.1117/12.2504356
- [3] Xiang, C., Bu, X. Z., & Yang, B. (2014). Three different attitude measurements of spinning projectile based on magnetic sensors. Measurement, 47, 331-340. https://doi.org/10.1016/j.measurement.2013.09.002
- [4] Yu, J., Bu, X., Xiang, C., & Yang, B. (2017). Spinning projectile’s attitude measurement using intersection ratio of magnetic sensors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(5), 866-876. https://doi.org/10.1177/0954410016644628
- [5] Xu, M., Bu, X., He, Z., & Han, W. (2019). Integral ratio method for the geomagnetic attitude measurement of spinning projectiles. Journal of Harbin Engineering University, 40(06), 1163-1168. https://doi.org/10.11990/jheu.201804009
- [6] He, Z., Bu, X., Yang, H., & Song, Y. (2021). Derivative ratio attitude solution algorithm of triorthogonal magnetic sensor for spinning projectile. Measurement, 186, 110228. https://doi.org/10.1016/j.measurement.2021.110228
- [7] Chughtai, F. A., Masud, J., & Akhtar, S. (2019). Unsteady aerodynamics computation and investigation of Magnus effect on computed trajectory of spinning projectile from subsonic to supersonic speeds. The Aeronautical Journal, 123(1264), 863-889. https://doi.org/10.1017/aer.2019.32
- [8] Lijin, J., & Jothi, T. J. S. (2018). Aerodynamic characteristics of an ogive-nose spinning projectile. Sādhanā. Academy Proceedings in Engineering Sciences 43, 1-8.
- [9] Norris, J., Hameed, A., Economou, J., & Parker, S. (2020). A review of dual-spin projectile stability. Defence Technology, 16, 1-9. https://doi.org/10.1016/j.dt.2019.06.003
- [10] Li, D., & Bu, X. Z. (2010). Roll angle measurement of spinning projectile based on non-orthogonal magnetic sensors. Acta Armamentarii, 31(10), 1316-1321.
- [11] Yu, X., Xiao, C., Liu, S., Zong, Q., Qu, Y., Chen, H., Zou, H., Shi, W., Wang, Y., Chen, A., Song, S., Gao, S., & Shao, S. (2020). Calibration of AC vector magnetometer based on ellipsoid fitting. IEEE Transactions on Instrumentation and Measurement, 70, 1-6. https://doi.org/10.1109/TIM.2020.3014980
- [12] Li, L., & Huang, J. (2018). Recursive of Least Square Based Online Calibration Method in Geomagnetic Detection. MATEC Web of Conferences (Vol. 232, p. 04087). EDP Sciences.
- [13] Sun, W., Yang, Y. H., & Wang, Y. (2018). Research on Error Correction of Magnetometer Based on Ellipsoid Fitting [J]. Chinese Journal of Sensors and Actuators, 31(09), 1373-1376. https://doi.org/10.3969/j.issn.1004-1699.2018.09.013
- [14] Li, X., Song, B., Wang, Y., Niu, J., & Li, Z. (2018). Calibration and alignment of tri-axial magnetometers for attitude determination. IEEE Sensors Journal, 18(18), 7399-7406. https://doi.org/10.1109/JSEN.2018.2859832
- [15] Farhangian, F., Bilel, S., Farhangian, F., & Landry Jr., R. (2021). A magnetometer calibration method using single-axis motion trajectory and unscented Kalman filter for body motion capture applications. International Journal of Sensors and Sensor Networks, 9(1), 1. https://doi.org/10.11648/J.IJSSN.20210901.11
- [16] Crassidis, J. L., & Cheng, Y. (2021). Three-axis magnetometer calibration using total least squares. Journal of Guidance, Control, and Dynamics, 44(8), 1410-1424. https://doi.org/10.2514/1.G005305
- [17] Lu, J. (2016). A fault tolerant, data fusion system for navigation applications to a ducted fan VTOL UAV. Open Access Master’s Report, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/98
- [18] Zhou, Z., Wang, L., Fu, J., & An, L. (2021, July). Aerodynamic parameters identification for high-spinning projectile based on geomagnetic data. 2021 40th Chinese Control Conference (CCC) (pp. 1236-1242). IEEE. https://doi.org/10.23919/CCC52363.2021.9549442
- [19] Deng, Z., Wang, J., Liang, X., & Liu, N. (2020). A coupling method of geomagnetic aided inertial attitude errors. IEEE Sensors Journal, 20(23), 14282-14289. https://doi.org/10.1109/JSEN.2020.3007210
- [20] Cuenca, A., & Moncayo, H. (2022). Machine learning application to estimation of magnetospheric contributions for geomagnetic-based navigation. AIAA SCITECH 2022 Forum (p. 1714). https://doi.org/10.2514/6.2022-1714
- [21] Wang, H., Jin, Y., & Doherty, J. (2017). Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Transactions on Cybernetics, 47(9), 2664-2677. https://doi.org/10.1109/TCYB.2017.2710978
- [22] Bui, D. T., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32-44. https://doi.org/10.1016/j.agrformet.2016.11.002
- [23] Ding, Y., Cheng, L., Pedrycz, W., & Hao, K. (2015). Global nonlinear kernel prediction for large data set with a particle swarm-optimized interval support vector regression. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2521-2534. https://doi.org/10.1109/TNNLS.2015.2426182
- [24] Su, Y. X., & Chi, R. (2017). Multi-objective particle swarm-differential evolution algorithm. Neural Computing and Applications, 28, 407-418. https://doi.org/10.1007/s00521-015-2073-y
- [25] Tang, B., Zhanxia, Z., & Luo, J. (2017). A convergence-guaranteed particle swarm optimization method for mobile robot global path planning. Assembly Automation, 37(1), 114-129. https://doi.org/10.1108/AA-03-2016-024
Uwagi
1. This work was supported by the National Natural Science Foundation of China. Grants nos. 61675097 and 62101287.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82a97e24-7da3-40db-9c92-bb9e0d585b81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.