PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Bottom Sediments in a River Under Acid and Alkaline Wastewater Discharge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The drainage flows of metal loads into the drainage and infiltration waters of mine dumps of enterprises have a dramatic effect on small rivers in industrial regions. The paper considers the outcomes of geochemical monitoring of the Karagaily River and assesses the transformation of the acid-base conditions depending on the influence of the facilities of the enterprise. The results of engineering and environmental surveys, including sampling of bottom sediments, laboratory preparation, chemical elemental analysis of samples and X-ray diffraction analysis of mineral composition, were presented. A complex technogenic alkaline sorption-hydroxide barrier was found at the mixing point of acidic river waters (the influence of dump and quarry waters) and alkaline wastewater of treatment facilities, where the deposited iron hydroxide adsorbs ore minerals, which reduces their outflow into larger rivers and increases the self-purification potential of the river. Further interaction of iron hydroxide with the acid mine drainage and calcium bicarbonate of wastewater results in pyritization of bottom sediments. Excavation and dewatering of the pyrite-containing bottom sediments will allow their joint use with tailings and ore-processing waste for re-extraction useful components.
Twórcy
  • Department of Geoecology, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia
  • Scientific and Educational Center for Collective Use of High-Tech Equipment, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia
Bibliografia
  • 1. Alekseenko, V.A.; Maximovich, N.G.; Alekseenko, A.V. 2017. Geochemical Barriers for Soil Protection in Mining Areas. In: Assessment, Restoration and Reclamation of Mining Influenced Soils, Bech, J., Bini, C., Pashkevich, M., Eds.; Academic Press: London, UK, pp. 255–274.
  • 2. Chalov, S.R., Jarsjö, J, Kasimov, N.S., Romanchenko, A.O., Pietroń, J., Thorslund, J., Promakhova, E.V., 2015a. Spatio-temporal variation of sediment transport in the Selenga River basin, Mongolia and Russia. Environ. Earth Sci. 73, 663–680.
  • 3. Chalov, S.R., Shkol’nyi, D.I., Promakhova, E.V., Leman, V.N., Romanchenko, A.O., 2015b. Formation of the Sediment Yield in Areas of Mining of Placer Deposits. Geogr. Nat. Resour., 36(2), 124–131.
  • 4. Chukaeva, M.A., Povarov, V.G., Sverchkov, I.P. 2020. Iron-Containing Metalworking Wastes as a Chemosorbent for Wastewater Treatment from Molybdenum Ions. Moscow University Chemistry Bulletin, 75(1), 36-42.
  • 5. Cronstedtite: Mineral information, data and localities. Available online: https://www.mindat.org/min1158.html (accessed on 05.05.2020).
  • 6. GOST 17.1.5.01-80. Nature protection. Hydrosphere. General requirements for sampling of bottom sediments of water objects for their pollution analysis.
  • 7. Isakov, A.E., Chukaeva, M.A. 2016. Ecological and geochemical peculiarities of surface water transformation in the area of the enterprise AO Apatit impact. International Journal of Ecology and Development, 31(2), 90-98.
  • 8. Kennecott Copper Mine. Available online: http://www.groundtruthtrekking.org/Issues/MetalsMining/Kennecott-Copper-Mine.html (accessed on 23.11.2020).
  • 9. Kharko P.A., Plokhov A.S. 2019. Evaluation of the impact of copper-sulphide deposits on the mineral composition of the bottom sediments of small rivers. The Eurasian Scientific Journal, [online] 6(11). Available at: https://esj.today/PDF/92NZVN619
  • 10. Kremcheyev, E.A.; Nagornov, D.O.; Kremcheyeva, D.A. 2020. Changing hydraulic conductivity after rupturing native structure of peat under limited evaporation conditions. In: Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature; Frank-Kamenetskaya, O.V., Vlasov, D.Yu., Panova, E.G., Lessovaia, S.N., Eds.; Springer: Cham, Switzerland, 233-256.
  • 11. Kulikova M.A. 2010. Assessment and abatement of the adverse impact of sulfide waste during the Ozernoe deposit mining. Doctoral Thesis, Saint Petersburg Mining University, Russia.
  • 12. Kuznetsov, V.S., Petrov D.S. 2017. Assessing the Environmental Condition of Minor Rivers in Urban Areas. J. Ecol. Eng., 18(6), 110–114, DOI: 10.12911/22998993/76221.
  • 13. Lytaeva, T.A., Isakov, A.E. 2017a. Environmental impact of the stored dust-like zink and iron containing wastes. Journal of Ecological Engineering, 18(3), 37–42.
  • 14. Lytaeva, T.A., Isakov, A.E. 2017b. Recycling of dust-like zinc and iron containing wastes of electric furnace steelmaking, 32(2), 115-120.
  • 15. Nevskaya M.A., Seleznev S.G., Masloboev V.A., Klyuchnikova E.M., Makarov D.V. 2019. Environmental and business challenges presented by mining and mineral processing waste in the Russian Federation. Minerals, 9(7), 445.
  • 16. Opekunov A.Y., Opekunova M.G., Somov V.V., Mitrofanova E.S., Kukushkin S.Y. 2018. Influence of the exploitation of the Sibay deposit (the Southern Urals) on the transformation of metal migration in subordinate landscapes. Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya, 1(1), 14-24.
  • 17. Opekunov A.Y., Mitrofanova E.S. Migration of heavy metals in technogenic dispersion flows of the Sibay copper pyrite deposit. 2016. Landscape Geochemistry of (on the centenary of A.I. Perelman). Proceedings of the All-Russian Scientific Conference. Moscow, October 18-20, 2016. Geographical Faculty of Lomonosov Moscow State University, 53-57.
  • 18. Pashkevich M.A. 2017. Classification and Environmental Impact of Mine Dumps. In: Assessment, Restoration and Reclamation of Mining Influenced Soils, Bech, J., Bini, C., Pashkevich, M., Eds.; Academic Press: London, UK, 1-32.
  • 19. Pashkevich M.A., Bech J., Matveeva V.A., Alekseenko A.V. 2020. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg Journal of Mining Institute, 241, 125-130. http://dx.doi.org/10.31897/PMI.2020.1.125
  • 20. Pashkevich, M.A., Petrova, T.A., Sverchkov, I.P. 2017a. Moist waste coal properties and recycling prospects. Obogashchenie Rud, 1, 46-50.
  • 21. Pashkevich, M.A., Sverchkov, I.P., Chukaeva, M.A. 2017b. Study of process properties of coal-water slurries produced from coal-preparation waste slurry. Obogashchenie Rud, 6, 54-57.
  • 22. Plokhov A.S., Pashkevich M.A., Isakov A.E., Chukaeva M.A. 2019. Study of the ways to utilize ore dressing tailings for obtaining a useful component. Topical Issues of Rational Use of Natural Resources. Proceeding of the International Forum-Contest of Young Researchers, Saint Petersburg, Russia.
  • 23. Puzanov, A.V., Baboshkina, S. V., Gorbachev, I. V., 2015. Content and distribution of major macro- and microelements in surface waters in the Altai. Water Resour., 42, 340–351.
  • 24. Strakhovenko, V.D., Roslyakov, N.A., Syso, A.I., Ermolaeva, N.I., Zarubina, E.Y., Taran, O.P., Puzanov, A.V., 2016. Hydrochemical characteristic of sapropels in Novosibirsk oblast. Water Resour., 43, 539–545.
  • 25. The Karagaily riverbed in Sibay is to be cleared and widened. Available online: http://www.bashinform.ru/news/668068-ruslo-reki-karagayly-v-sibae-raschistyat-i-rasshiryat (accessed on 05.05.2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82a52597-3653-454d-b644-97cb0305664f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.