PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Differences in Bio-activators and Fermentation Time on the Properties of Liquid Organic Fertilizers Based on Local Rabbit’s Urine Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rabbits, which are commonly raised as livestock in many rural areas of Asian countries, produce liquid waste called urine that can have negative environmental impacts. In order to tackle this issue, the development of technology is necessary to effectively process this waste into a form that can be utilized without causing harm to the environment. Urine contains valuable organic compounds that can be used as raw materials for the production of liquid organic fertilizer (LOF). The quality of this fertilizer is dependent on the availability of microorganism substrates and the duration of fermentation. The objective of this study is to investigate the influence of different substrates and fermentation periods on the properties of liquid organic fertilizer. The raw material used in this research is locally sourced rabbit urine. The experiments were conducted in a laboratory at the Faculty of Animal Science, Hasanuddin University, Indonesia. Three types of substrates were employed: bioactivator animal substrate (BAsb), bioactivator plant substrate (BPsb), and commercial microorganism (C-mic) as the control. Two different fermentation periods were tested: 2 weeks and 4 weeks. The data were analyzed using a completely randomized design (CRD) with factorial patterns. The results revealed that the type of bioactivator substrate had a significant impact (p<0.05) on the N-organic, C/N ratio, P2O5, and K2O content. However, pH and C-organic showed no significant effect (p>0.05). Additionally, fermentation time had a significant effect (p<0.05) on C-organic, N-organic, and the C/N ratio, but pH did not have a significant effect (p>0.05). Moreover, there was a significant interaction (p<0.05) between the substrate type and fermentation time in the LOF-RU process. The production of N-organic content from local rabbit urine yielded promising results. For the LOF-RU production process with BAsb or BPsb, fermentation periods of up to 4 weeks can be applied.
Słowa kluczowe
Rocznik
Strony
264--275
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Faculty of Animal Science, Hasanuddin University Jl. Perintis Kemerdekaan Km. 10 Makassar, South Sulawesi, 90245, Indonesia
  • Faculty of Animal Science, Hasanuddin University Jl. Perintis Kemerdekaan Km. 10 Makassar, South Sulawesi, 90245, Indonesia
  • National Agricultural Research Center (NARC), Baq’a 19381, Jordan
  • Faculty of Animal Science, Hasanuddin University Jl. Perintis Kemerdekaan Km. 10 Makassar, South Sulawesi, 90245, Indonesia
autor
  • Faculty of Animal Science, Hasanuddin University Jl. Perintis Kemerdekaan Km. 10 Makassar, South Sulawesi, 90245, Indonesia
  • National Agricultural Research Center (NARC), Baq’a 19381, Jordan
Bibliografia
  • 1. Ahmad, R., Jilani, G., Arshad, M., Zahir, Z. A., Khalid, A. 2007. Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Annals of Microbiology, 57, 471–479. https://doi.org/10.1007/BF03175343
  • 2. Ashley, K., Cordell, D. and Mavinic, D. 2011. A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere. 84, 737–746. https://doi.org/10.1016/j.chemosphere.2011.03.001
  • 3. Baghbani-Arani, A., Modarres-Sanavy, S.A.M., Poureisa, M. 2021. Improvement the soil physicochemical properties and fenugreek growth using zeolite and vermicompost under water deficit conditions. Journal of Soil Science and Plant Nutrition, 21, 1213–1228. https://doi.org/10.1007/s42729-021-00434-y
  • 4. Balittanah. 2006. Pupuk Organik dan Pupuk Hayati (Organic Fertilizer and Biofertilizer). Balai Besar Litbang Sumberdaya Lahan Pertanian Badan Penelitian dan Pengembangan Pertanian. Bogor.
  • 5. Bamdad, H., Papari, S., Lazarovits, G., Berruti, F. 2022. Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use and Management, 38(1), 94–120. https://doi.org/10.1111/sum.12762
  • 6. Barneze, A.S., Mazzetto, A.M., Zani, C.F., Misselbrook, T. and Cerri, C.C. 2014. Nitrous oxide emissions from soil due to urine deposition by grazing cattle in Brazil, Atmospheric Environment. 92, 394–397.
  • 7. Bergstrand, K.J. 2022. Organic fertilizers in greenhouse production systems–a review. Scientia Horticulturae, 295, 110855. https://doi.org/10.1016/j.scienta.2021.110855
  • 8. Berry, P.M., Sylvester‐Bradley, R., Philipps, L., Hatch, D.J., Cuttle, S.P., Rayns, F.W., Gosling, P. 2002. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use and Management, 18, 248–255.
  • 9. Bhatla, S.C., Lal, M.A. 2023. Essential and Functional Mineral Elements. In Plant Physiology, Development and Metabolism, 25–49. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5736-1_2
  • 10. Cordell, D., Rosemarin, A., Schröder, J.J and Smit, A.L. 2011. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 48, 747–758.
  • 11. Das, P.P., Singh, K.R., Nagpure, G., Mansoori, A., Singh, R.P., Ghazi, I.A., Singh, J. 2022. Plantsoil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214, 113821. https://doi.org/10.1016/j.envres.2022.113821
  • 12. Di, H.J. and K.C. Cameron. 2002. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 64, 237–256.
  • 13. Dordas, C.A., Lithourgidis, A.S., Matsi, T. and Barbayiannis, N. 2008. Application of liquid cattle manure and inorganic fertilizers affect dry matter nitrogen accumulation, and partitioning in maize. Nutr. Cycl. Agroecosyst. 80, 283–296.
  • 14. Draganova, I., Yule, I., Stevenson, M., Betteridge, K. 2015. The effects of temporal and environmental factors on the urination behaviour of dairy cows using tracking and sensor technologies. Precision Agric. 17(4), 1–15.
  • 15. Elser, J and Bennett, E. 2011. Phosphorus cycle: a broken biogeochemical cycle, Nature. 478, 29–31.
  • 16. Ferichani, M. 2024. The potential of rabbit urine in converting household waste into fertilizer as the resilience of farmer family economics in sub-urban. In IOP Conference Series: Earth and Environmental Science, 1292(1), 012035. IOP Publishing.
  • 17. Hartmann, M., Six, J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), 4–18. https://doi.org/10.1038/s43017-022-00366-w
  • 18. Hawkesford, M.J., Cakmak, I., Coskun, D., De Kok, L.J., Lambers, H., Schjoerring, J.K., White, P.J. 2023. Functions of macronutrients. In Marschner’s mineral nutrition of plants 201–281. Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00019-8
  • 19. Hermans, S.M., Buckley, H.L., Case, B.S., CurranCournane, F., Taylor, M., Lear, G. 2020. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 8(1), 79. https://doi.org/10.1186/s40168-020-00858-1
  • 20. Hsu, S.F. and Buckley, D.H. 2008. Evidence for the functional significance of diazotroph community structure in soil. ISME J. 3, 124–136.
  • 21. Hu, J., Lin, X., Wang, J., Dai, J. and Chen R. 2011. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer. J Soil Sediment. 11, 271–280.
  • 22. Irawan, S., Tampubolon, K., Karim, A., Musri, M.A., Suhelmi dan E. Sitepu. 2022. Kesuburan tanaman dengan mengunakan urine kelinci dengan penambahaan air kelapa dan pribiotik em 4 dengan minuman yakult dengan cara fermentasi. Journal Liaison Academia and Society (J-LAS). 2(4), 63–83.
  • 23. Ishiwatari, R and M. Uzaki. 1987. Diagenetic changes of lignin compounds in a more than 0.6 million-yearold lacustrine sediment (Lake Biwa, Japan). Geochimica Et Cosmochimica Acta. 51(2): 321-28.
  • 24. Izaurralde, R.C., McGill, W.B. and Rosenberg, N.J. 2000. Carbon cost of applying nitrogen fertilizer. Science. 288, 811–812.
  • 25. Jakhar, A.M., Aziz, I., Kaleri, A.R., Hasnain, M., Haider, G., Ma, J., Abideen, Z. 2022. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact, 27, 100411.
  • 26. Johnston, A.E. 2003. Understanding potassium and and its use in agriculture, European Fertilizer Manufacturers Association (EFMA), Belgium.
  • 27. Lambert, M.G., Clark, D.A. and Litherland, A.J. 2011. Advances in pasture management for animal productivity and health. New Zealand Vet. J. 52, 311–319.
  • 28. Ledgard, S.F. Penno, J.W. and Sprosen, M.S. 1999. Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application. J. Agric. Sci.132, 215–225.
  • 29. Leite, L.F.C., Oliveira, F.C., Arau´ jo, A.S.F., Galva˜ o, S.R.S., and Lemos Soil, J.O. 2010. Organic carbon and biological indicators in an Acrisol under tillage systems and organic management in northeastern Brazil. Soil Res. 48, 258–265.
  • 30. Lugo-Presez, J and Lloyd, J.E. 2009. Ecological Implications of organic mulches in arboriculture: a mechanistic pathway connecting the use of organic mulches with tree chemical defences. Arboriculture & Urban Forestry. 35(4), 211–217.
  • 31. Maguire, R., Alley, M., Wysor W.G. and Flowers, W. 2009. Fertilizer types and calculating application rates. Virginia Cooperative Extension. Publication 424–035, Virginia State University.
  • 32. Maurya, S., Abraham, J.S., Somasundaram, S., Toteja, R., Gupta, R., Makhija, S. 2020. Indicators for assessment of soil quality: a mini-review. Environmental Monitoring and Assessment, 192, 1–22. https://doi.org/10.1007/s10661-020-08556-z
  • 33. Moir, J.L. Cameron, K.C, and Di, H.J. 2007. Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient uptake and pasture quality in a grazed pasture system. Soil Use Manage. 23, 111–120.
  • 34. Mutai, P.A. 2020. The potential use of rabbit urine as a bio fertilizer foliar feed in crop production. Africa Environmental Review Journal, 4(1), 138–147.
  • 35. Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I.U., Du, D. 2022. The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770.
  • 36. Nikitin, D.A., Semenov, M.V., Chernov, T.I., Ksenofontova, N.A., Zhelezova, A.D., Ivanova, E.A., Khitroc, N.B., Stepanov, A.L. 2022. Microbiological indicators of soil ecological functions: a review. Eurasian Soil Science, 55(2), 221–234. https://doi. org/10.1134/S1064229322020090
  • 37. Nygaard Sorensen, J., Thorup‐Kristensen, K. 2011. Plant‐based fertilizers for organic vegetable production. Journal of Plant Nutrition and Soil Science, 174(2), 321–332.
  • 38. Philippot, L., Andert, J., Jones, C.M. Bru D., and Hallin, S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2 O emissions from soil. Global Change Biol. 17, 1497–1504.
  • 39. Prahl, F.G. Ertel, J.R., Goni, M.A., Sparrow, M.A. and Eversmeyer, B. 1994. Terrestrial organic-carbon contributions to sediments on the washington margin. Geochimica Et Cosmochimica Acta. 58(14), 3035–48.
  • 40. Raden, I., Fathillah, S.S., Fadli, M. and Suyadi. 2017. Nutrient content of liquid organic fertilizer (LOF) by various bio-activator and soaking time. Nusantara Bioscience. 9(2), 209–213.
  • 41. Reeves, D.W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res. 43, 131–167.
  • 42. Rosniawaty, S., Sudirja, R. dan Afrianto, H. 2015. Pemanfaatan urin kelinci dan urin sapi sebagai alternatif pupuk organik cairpada pembibitan kakao (Theobroma cacao L.). Jurnal Kultivasi. 14(1), 32–36.
  • 43. Rosniawaty, S., Sudirja, R. dan Afrianto, H. 2015. Pemanfaatan urin kelinci dan urin sapi sebagai alternatif pupuk organik cair pada pembibitan kakao (Theobroma cacao L), Jurnal Kultivasi. 14(1), 32–36.
  • 44. Roten, R.L., Fourie, J., Owens, J.L., Trethewey, J.A.K., Ekanayake, D.C., Werner, A., Irie, K., Hagedorn, M. and Cameron, K.C. 2017. Urine patch detection using LiDAR technology to improve nitrogen use efficiency in grazed pastures, Computers and Electronics in Agriculture. 135, 128–133.
  • 45. Said, M.I., Asriany, A., Sirajuddin, S.N., Abustam, E., Rasyid, R., Al-Tawaha, A.R.M. 2018. Evaluation of quality of liquid organic fertilizer from rabbit‘s urine waste fermented using local microorganisms as decomposers. The Iraqi Journal of Agricultural Science, 49(6), 990.
  • 46. Sajimin, Y.C. Raharjo, N.D. Purwantari dan Lugiyo. 2003. Produksi tanaman pakan ternak diberi pupuk feses kelinci. J Online Agroekoteknologi. 2(3), 15–161.
  • 47. Shah, I.H., Jinhui., W. Li., X., Hameed., M.K., Manzoor., M.A., Li., P., Zhang, Y., Niu., Q., Chang, L. 2024. Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Scientia Horticulturae. 327, 112832.
  • 48. Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Science of the Total Environment. 465, 56–63.
  • 49. Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., Dantu, P.K. 2020. Role of organic fertilizers in improving soil fertility. Contaminants in Agriculture: Sources, Impacts and Management, 61–77.
  • 50. Wang, Y., Liu, L., Yang, J., Duan, Y., Luo, Y., Taherzadeh, M.J., Li, Y., Li, H., Awasthi, M.K., Zhao, Z. 2020. The diversity of microbial community and function varied in response to different agricultural residues composting. Science of the Total Environment, 715, 136983.
  • 51. Zamora, P., Georgieva, T., Ter-Heijne, A., Tom, H.J.A., Sleutels, A.W. Jeremiasse, Saakes, M., Buisman, C.J.N., and Kuntke, P. 2017. Ammonia recovery from urine in a scaled-up microbial electrolysis cell. Journal of Power Sources. 356, 491–499.
  • 52. Zhang, Q.C., Shamsi, I.H., Xu, D.T., Wang, G.H. and Lin, X.Y. 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol. 57, 1–8.
  • 53. Zhi, J., Qiu, T., Bai, X., Xia, M., Chen, Z., Zhou, J. 2022. Effects of nitrogen conservation measures on the nitrogen uptake by cotton plants and nitrogen residual in soil profile in extremely arid areas of Xinjiang, China. Processes, 10(2), 353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82a08e8e-6fde-4e21-8561-fbd20cdda134
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.