PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient cost-effective static-PPP using mixed GPS/GLONASS single-frequency observations (KSA)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precise point positioning (PPP) is a GNSS positioning technique that saves cost and has an acceptable accuracy for enormous applications. PPP proved its efficiency through two decades comparing with traditional differential positioning technique. PPP uses one receiver collecting observations at an unknown station without the need for a reference station with known coordinates. PPP-collected observations must undergo extensive mitigation of different GNSS errors. Static-PPP accuracy depends mainly on the observations type (dual or single frequency), used systems (GPS or GLONASS or mixed GPS/GLONASS), satellites geometry, and observations duration. Static-PPP using dualfrequency observations gives optimum accuracy with a high cost. Static-PPP using singlefrequency observations gives acceptable accuracy with a low cost. Since the end of 2012, PPP users are able to depend on GLONASS system as an alternative. This research investigates singe-frequency/static-PPP accuracy variation on KSA based on different factors: the system used (GPS or GLONASS or GPS/GLONASS), satellites geometry, observations duration, and ionosphere activity state. Observations from 2 days reflecting different ionospheric activity states were used for this research from three CORS stations (KSA-CORS network) operated by KSA-General Authority for Survey and Geospatial Information (KSA-GASGI). It can be concluded that precision (0.05 m lat., 0.12 m long., and 0.13 m height) under quiet ionosphere and precision (0.09 m lat., 0.20 m long., and 0.23 m height) under active ionosphere could be attained using 24 h mixed GPS/GLONASS single-frequency observations. Static-PPP using 24 h mixed GPS/GLONASS single-frequency observations’ accuracies are 0.01 m lat., 0.01 m long., and 0.03 m height (quiet ionosphere) and 0.01 m lat., 0.06 m long., and 0.06 m height (active ionosphere) compared to true station coordinates.
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • College of Engineering, King Saud University, Riyadh, KSA
  • College of Engineering, Aswan University, Aswan, Egypt
Bibliografia
  • Aggrey J (2014). “Multi-GNSS Precise Point Positioning Software Architecture and Analysis of GLONASS Pseudo-range Biases”. Master thesis. York university, Canada.
  • Bisnath S., Gao Y. (2008). Current State of Precise Point Positioning and Future Prospects and Limitations. International Association of Geodesy Symposia, Vol. 133 pp. 615-623, 2008.
  • Cai C (2009). “Precise Point Positioning Using Dual-Frequency GPS and GLONASS Measurements.” Calgary: UCGE Reports No. 20291, pp. 40-52.
  • Chen K and Y Gao (2005). "Real-Time Precise Point Positioning Using Single Frequency Data," Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, September 2005, pp. 1514-1523.
  • CSRS-PPP (2021). CSRS-PPP: Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) service. https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en. Accessed (3/2/2021).
  • Ding, W., Tan, B., Chen, Y., Teferle, F. N., & Yuan, Y. (2018). Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia. Advances in Space Research, 61(3), 951-961.
  • Du, Y., Wang, J., Rizos, C. and Ahmed El-Mowafy (2021). “Vulnerabilities and integrity of precise point positioning for intelligent transport systems: overview and analysis”. Satellite Navigation 2, 3 (2021). https://doi.org/10.1186/s43020-020-00034-8.
  • Farah, A. (2013). “Effect analysis of GPS observation type and duration on convergence behavior of static PPP”. Journal of Geomatics, vol.7, no.2, October 2013.
  • Farah, A. (2014). “Assessment study of static-PPP convergence behavior using GPS, GLONASS and mixed GPS/GLONASS observations”. Artificial Satellites Journal of Planetary Geodesy, Vol. 49, No. 1 2014 DOI: 10.2478/arsa-2014-0005.
  • Farah, A. (2016). “Accuracy evaluation for online Precise Point Positioning Services”. Journal of Geomatics, vol.10, no.1, April 2016.
  • Farah, A. (2017) “Accuracy Assessment Study for Kinematic PPP using Low-Cost GPS Receiver”. Al Azhar’s 14th International Conference on: Engineering, Architecture & Technology (AEIC) (12-14) December, 2017. Cairo, Egypt.
  • Farah, A. (2021) “Static-PPP Behaviour using GPS, GLONASS and Mixed GPS/GLONASS Single/Dual Observations under Different Satellites Geometry Processed by CSRS-PPP Version-3 Service (Riyadh, KSA)”. Journal of Geomatics, Vol. 15 No.2.
  • GFZ (2021). GFZ German Research Center for Geosciences. Kp_ap_Ap_SN_F107_nowcast. http://www-app3.gfz-potsdam.de/kp_index/Kp_ap_Ap_SN_F107_nowcast.txt. Accessed (2-11-2021).
  • Hofmann-Wellenhof B, and H Lichtenegger (2008). “Global Navigation Satellite Systems.” NewYork: SpringerWien, pp. 33-58.
  • Krietemeyer A, Ten Veldhuis M-c, Van der Marel H, Realini E, Van de Giesen N. Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring. Remote Sensing. 2018; 10(9):1493. https://doi.org/10.3390/rs10091493.
  • KSACORS (2021). Kingdom of Saudi Arabia- Continuously Operating Reference Stations. https://ksacors.gcs.gov.sa/. Accessed (10-3-2021).
  • KSA-GASGI (2021). Kingdom of Saudi Arabia- General Authority for Survey and Geospatial Information. https://www.gasgi.gov.sa/en/pages/default.aspx. Accessed (2-3-2021).
  • Leandro R F (2009). “Precise point positioning a new approach for positioning, atmospheric studies, and signal analysis.” Fredericton, New Brunswick, Canada, Technical Report No. 267, http://www.gmat.unsw.edu.au/snap/gps/glossary. Accessed: August, 2014.
  • SILSO (2021). Sunspot Index and Long-term Solar Observations. Daily total sunspot number. https://wwwbis.sidc.be/silso/datafiles. Accessed (1-11-2021).
  • Soycan, M. (2012). “A quality evaluation of precise point positioning within the Bernese GPS Software Version 5.0”. Arabian Journal for Science and Engineering, Vol. 37 No. 1, 147-162.
  • STCE (2021). Solar-Terrestrial Center of Excellence newsletter (2021). https://www.stce.be/newsletter/newsletter.php. Accessed (1/11/2021). TEQC (2021).
  • TEQC-UNAVCO Tutorial. http://facility.unavco.org/software/teqc/doc/UNAVCO_Teqc_Tutorial.pdf. Accessed (4/2/2021).
  • Trimble (2021). Trimble NetR9 GNSS Reference Receiver user guide. http://navgeotech.com/ftp/user_guide/um_NetR9_en.pdf. Accessed (12-5-2021).
  • Trimble Planning (2021). Trimble GNSS planning online. https://www.gnssplanning.com/#/settings. Accessed (10-8-2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-829d8181-44f5-4e53-8c03-c09ec15cd45d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.