PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Operation of a hybrid heating system based on heat pumps using a photovoltaic installation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Poland, heating systems using renewable energy sources have gained importance in construction projects, especially in newly designed buildings. This is mainly due to the Regulation of the Minister of Infrastructure, which sets technical conditions for buildings. As of December 31, 2020, the primary energy index for newly designed single-family buildings should not exceed 70 kWh/(m2year). This requires efficient energy sources in building design. Renewable energy installations have significantly lower primary energy utilization rates than fossil fuel systems, making them the preferred choice. In a facility in Batowice near Krakow, a hybrid energy system with ground-source and air-source heat pumps has been installed. These pumps are powered by electricity from a photovoltaic installation connected to the grid. The study aims to determine the optimal heat pump choice based on the facility’s conditions and optimize electricity consumption from the photovoltaic installation. Both heat pumps showed similar efficiencies during the heating season from December 2022 to March 2023: the ground-source heat pump achieved an annual coefficient of performance of 2.69, and the air-source heat pump achieved a seasonal coefficient of perfor-mance of 2.63. Given the high non-renewable primary energy factor for grid electricity, the feasibility of replacing gas boilers with heat pumps requires careful evaluation. The results indicate that integrating a heat pump with a photovoltaic installation substantially reduces the primary energy utilization index, supporting climate protection and the advancement of renewable energy sources. However, heat pumps alone may not be sufficiently efficient without the support of a PV installation.
Rocznik
Strony
153--162
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland
Bibliografia
  • [1] Kim, W., Choi, J., & Cho, H. (2013). Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating. Renewable Energy, 50, 596–604, doi: 10.1016/j.renene. 2012.07.020
  • [2] Sridhar, A., Belonogova, N., Honkapuro, S., Huuki, H., Kop-sakangas-Savolainen, M., & Ruokamo, E. (2023). Identifying hybrid heating systems in the residential sector from smart meter data. Journal of Building Engineering, 74, 106867. doi: 10.1016/ j.jobe.2023.106867
  • [3] Yao, J., Liu, W., Zhang, L., Tian, B., Dai, Y., & Huang, M. (2020). Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump. Renewable Energy, 160, 160−175. doi: 10.1016/j. renene.2020.06.101
  • [4] Kazem, H.A., Chaichan, M.T., Al-Waeli A.H.A., & Sopian K. (2022). A systematic review of photovoltaic/thermal applications in heat pumps systems. Solar Energy, 269, 112299. doi: 10.1016/ j.solener.2023.112299
  • [5] Long, J., Xia, K., Zhong, H., Lu, H., & Yongga A. (2021). Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump. Energy Conversion and Man-agement. 229, 113624. doi: 10.1016/j.enconman.2020.113624
  • [6] Bezrodny, M,. Prytula, N., & Tsvietkova M. (2019). Efficiency of heat pump systems of air conditioning for removing excessive moisture. Archives of Thermodynamics, 40(2), 151−165. doi: 10.24425/ather.2019.129546
  • [7] Hanuszkiewicz-Drapała, M., & Bury T. (2016). Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building. Archives of Thermodynamics, 37(1), 42−72. doi: 10.1515/aoter-2016-0004
  • [8] Meles, T.H., & Ryan, L. (2022) Adoption of renewable home heating systems: An agent-based model of heat pumps in Ireland. Renewable and Sustainable Energy Reviews, 169, 112853. doi: 10.1016/j.rser.2022.112853
  • [9] Marijanovic, Z., Theile, P., & Czock, B.H. (2022). Value of short-term heating system flexibility – A case study for residen-tial heat pumps on the German intraday market. Energy, 249, 123664. doi: 10.1016/j.energy.2022.123664
  • [10] You, Z., Lumpp, S.D., Doepfert, M., Tzscheutschler, P., & Goe-bel, C. (2024). Leveraging flexibility of residential heat pumps through local energy markets. Applied Energy, 355, 122269. doi: 10.1016/j.apenergy.2023.122269
  • [11] Pater, S. (2019). Field measurements and energy performance analysis of renewable energy source devices in a heating and cooling system in a residential building in southern Poland. En-ergy and Buildings, 199, 115−125. doi: 10.1016/j.enbuild.2019. 06.057
  • [12] Pater, S. (2023). Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland. Energies, 16, 4003. doi: 10.3390/en16104003
  • [13] Katoch, M., Dahiya, V., & Yadav, S.K.: (2023). The performance analysis of dusty photovoltaic panel. Archives of Thermodynamics, 44(2), 49-68. doi: 10.24425/ather.2023.146558
  • [14] Kuczyński, W., & Borowska, A. (2023). The effect of photovoltaic system operating parameters on exergy efficiency. Archives of Thermodynamics, 44(4), 619-633. doi: 10.24425/ather.2023. 149736
  • [15] Khadim, O.I.S.A., & Al-Ghezi, A.K.A. (2023). Photovoltaic panels cooling technologies: Comprehensive review. Archives of Thermodynamics, 44(4), 581-617. doi: 10.24425/ather.2023. 149720
  • [16] Deka, P., & Szlęk, A. (2022). Thermal energy storage in buildings: Opportunities and challenges. Archives of Thermodynamics, 43(4), 21-61. doi: 10.24425/ather.2022.144405
  • [17] Karwacki, J., Kwidziński, R., & Leputa, P. (2022). Performance analysis and PCM selection for adsorption chiller aided by energy storage supplied from the district heating system. Archives of Thermodynamics, 43(4), 135-169. doi: 10.24425/ather.2022. 144409
  • [18] Cieśliński, J.T., Fabrykiewicz, M., Wiśniewski, T.S., Kubiś, M., Smoleń, S., Eicke, A., Dutkowski, K., & Głuszek-Czarnecka, M. (2023). New empirical correlations for the viscosity of selected organic phase change materials. Archives of Thermodynamics, 44(4), 123-129. doi: 10.24425/ather.2023.149732
  • [19] Ministry of Development and Technology. (2022). Regulation of the Minister of Infrastructure on the technical conditions to be met by buildings and their location. Journal of Laws 2022, item 1225. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id= WDU20220001225 [accessed 07 Jan. 2024].
  • [20] Ministry of Development and Technology. (2023) Regulation of the methodology for determining the energy performance of building or part of a building and energy performance certifi-cates. Journal of Laws, 697. https://isap.sejm.gov.pl/isap.nsf/ DocDetails.xsp?id= WDU20220001225 [accessed 07 Jan. 2024].
  • [21] Marshal of the Sejm. (2015). Act of February 20, 2015 on renewable energy sources. Journal of Laws, 478. https://isap.sejm.gov. pl/isap.nsf/DocDetails.xsp?id= WDU20220001378 [accessed 07 Jan. 2024].
  • [22] Widén, J. (2014). Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Applied En-ergy, 126, 199−212. doi: 10.1016/j.apenergy.2014.04.008
  • [23] TAURON Dystrybucja S.A. e-licznik – TAURON. https://elicz-nik.tauron-dystrybucja.pl/energia [accessed 07 Jan. 2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82948d54-425d-4829-b735-34063ab9ce82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.