PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting Model of GHG Emission in Manufacturing Sectors of Thailand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analyse energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025) and 25 years (2016-2040) by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1) Model 1 (2,1,1) shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2) Model 2 (2,1,2) shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.
Rocznik
Strony
18--24
Opis fizyczny
BIbliogr. 23 poz., tab., rys.
Twórcy
  • Faculty of Economics, Chulalongkorn University, Thailand
  • Faculty of Economics, Chulalongkorn University, Thailand
Bibliografia
  • 1. Alizadeh M., Jolai F., Aminnayeri. M, Rada R. 2012. Comparison of different input selection algorithms in neuro-fuzzy modeling. Expert Syst Appl, 39, 1536–1544.
  • 2. Asian Development Bank (ADB). 2014. Environment, Climate Change, and Disaster Risk Management. Manila. Asian Development Bank.
  • 3. Assaad M., Boné R., Cardot H. 2008. A new boosting algorithm for improved time-series forecasting with recurrent neural networks. Inform Fusion, 9, 41–55.
  • 4. Azadeh A., Asadzadeh S., Saberi M., Nadimi V., Tajvidi A., Sheikalishahi M. 2011. A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE. Appl Energy, 88, 3850–3859.
  • 5. Azadeh A., Saberi M., Seraj O. 2010. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy, 35, 2351–2366.
  • 6. Barak S., Dahooie JH., Tichy´ T. 2015. Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick. Expert Syst Appl, 42, 9221–9235.
  • 7. Ciabattoni L., Grisostomi M., Ippoliti G., Longhi S. 2014. Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario. Energy, 74, 359–367.
  • 8. Ekonomou L. 2010. Greek long-term energy consumption prediction using artificial neural networks. Energy, 35, 512–517.
  • 9. Hao J., Liu D., Li Z., Chen Z., Kong L. 2012. Power system load forecasting based on fuzzy clustering and gray target theory. Energy Proc, 16, 1852–1859.
  • 10. Jovanovic´ RZ., Sretenovic´ AA. , Z ivkovic´ BD. 2015. Ensemble of various neural networks for prediction of heating energy consumption. Energy Build, 94, 189–199.
  • 11. Lee Y-S., Tong L-I. 2011. Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Convers Manage, 52, 147–152.
  • 12. Lee Y-S., Tong L-I. 2012. Forecasting nonlinear time series of energy consumption using a hybrid dynamic model. Appl Energy, 94, 251–256.
  • 13. Leontief W.W. 1986. Input-Output Economics (2nd ed.). New York, Oxford University Press.
  • 14. Mamlook R., Badran O., Abdulhadi E. 2009. A fuzzy inference model for short-term load forecasting. Energy Policy, 37, 1239–1248.
  • 15. Office of the National Economic and Social Development Board. 2015. National Income of Thailand. Bangkok: NESDB.
  • 16. Osorio G., Matias J., Catalão J. 2015. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy, 75, 301–307.
  • 17. Pappas SS., Ekonomou L., Karamousantas DC., Chatzarakis G., Katsikas S., Liatsis P. 2008. Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models. Energy, 33, 1353–1360.
  • 18. Suganthi L., Iniyan S., Samuel AA. 2015. Applications of fuzzy logic in renewable energy systems – a review. Renew Sustain Energy Rev, 48, 585–607.
  • 19. Suganthi L., Samuel AA. 2012. Energy models for demand forecasting – a review. Renew Sustain Energy Rev, 16, 1223–1240.
  • 20. Thailand Development Research Institute (TDRI). 2007. Prioritizing Environmental Problems with Environmental Costs. Final report prepared the Thailand Health Fund. Bangkok.
  • 21. Xie N-m., Yuan C-q., Yang Y-j. 2015. Forecasting China’s energy demand and self sufficiency rate by grey forecasting model and Markov model. Int J Electr Power Energy Syst, 66, 1–8.
  • 22. Yu S., Wei Y-M., Wang K. A. 2012. PSO–GA optimal model to estimate primary energy demand of China. Energy Policy, 42, 329–340.
  • 23. Zhao H., Magoulès F. 2012. A review on the prediction of building energy consumption. Renewable Sustainable Energy Rev, 16, 3586–3592.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82941da7-cc1b-4455-ac91-96f52859cc16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.