PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovations in poly(vinyl alcohol) derived nanomaterials

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(vinyl alcohol) (PVA) has been considered as an important commercial synthetic thermoplastic polymer. PVA is a low cost, reasonably processable, optically transmitting, heat stable, and mechanically robust plastic. PVA-based nanomaterials usually comprise of the nanocomposites (PVA/graphene, PVA/carbon nanotube, PVA/nanodiamond, PVA/metal nanoparticle) and nanofibers. The structural, optical, mechanical, and electrical properties of the PVA-based nanomaterials have been enhanced with nanofiller addition or nanostructuring. This review offers fundamentals and advanced aspects of poly(vinyl alcohol) and the derived nanomaterials. It highlights recent advances in PVA nanocomposites and nanofibers for potential applications. The PVA-based nanomaterials have been successfully employed in fuel cells, sensors, batteries, membranes, electronics, and drug delivery relevances. The challenges and opportunities to strengthen the research fields of PVA-based nanomaterials have also been presented.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 100 poz., tab., rys.
Twórcy
autor
  • Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
Bibliografia
  • 1. Doğan, E., Tokcan, P., Diken, M., Yilmaz, B., Kizilduman, B. and Sabaz P.: Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility. Advances in Materials Science 19 (2019) 32-45.
  • 2. Limpan, N., Prodpran, T., Benjakul, S. and Prasarpran, S.: Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol)(PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids 29 (2012) 226-233.
  • 3. Alexy, P., Káchová, D., Kršiak, M., Bakoš, D. and Šimková B.: Poly (vinyl alcohol) stabilisation in thermoplastic processing. Polymer Degradation and Stability 78(2002) 413-421.
  • 4. Malathi, J., Kumaravadivel, M., Brahmanandhan, G., Hema, M., Baskaran, R. and Selvasekarapandian, S.: Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. Journal of Non-Crystalline Solids 356 (2010) 2277-2281.
  • 5. Jenni, A., Holzer, L., Zurbriggen, R. and Herwegh, M.: Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cement and Concrete Research 35 (2005) 35-50.
  • 6. Song, H.: Fabrication and characterisation of electrospun polyvinylidene fluoride (PVDF) nanocomposites for energy harvesting applications: Brunel University London (2016).
  • 7. El-Aasser, M.S.: Emulsion polymerization of vinyl acetate: Springer Science & Business Media (2012).
  • 8. Wang, R. and Wang Q, Li, L.: Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems. Polymer International 52 (2003) 1820-1826.
  • 9. Mok, C.F., Ching, Y.C., Muhamad, F., Osman. N.A.A., Dai Hai, N. and Hassan, C.R.C. Adsorption of Dyes Using Poly (vinyl alcohol)(PVA) and PVA-Based Polymer Composite Adsorbents: A Review. Journal of Polymers and the Environment (2020) 1-19.
  • 10. Das, L., Das, P., Bhowal, A. and Bhattachariee, C.: Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environmental Technology & Innovation (2020) 100664.
  • 11. Murad, S.K. and Kadhim, S.H.: Synthesis, Characterization and Electrical Conductivity of Poly Vinyl Alcohol Graft Adipic Acid and Application as Sensors. International Journal of Pharmaceutical Research 12 (2020).
  • 12. Madiwale, P.V., Singh, G.P., Biranje, S. and Adivarekar, R.: Preparation of Silk Fibroin/PVA Hydrogels Using Chemicalfree Cross-Linking for Tissue Engineering Applications. Journal of the Technical Textile 268 (2019).
  • 13. Yu, J., Buffet, J.-C. and O'Hare, D.: Aspect Ratio Control of Layered Double Hydroxide Nanosheets and their Application for High Oxygen Barrier Coating in Flexible Food Packaging. ACS Applied Materials & Interfaces (2020).
  • 14. Beşen, B.S.: Production of Disposable Antibacterial Textiles Via Application of Tea Tree Oil Encapsulated into Different Wall Materials. Fibers and Polymers. 20 (2019) 2587-2593.
  • 15. Albayrak Ari. G. and Gülen, C.: The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. Journal of Natural & Applied Sciences 23 (2019).
  • 16. Chen, S., Lan, R., Humphreys, J. and Tao, S.: Perchlorate based ‘over-saturated gel electrolyte’for an aqueous rechargeable hybrid Zn-Li battery. ACS Applied Energy Materials. (2020).
  • 17. Peng, J. and Cheng, Q.: High‐performance nanocomposites inspired by nature. Advanced Materials 29 (2017): 1702959.
  • 18. Aslam, M., Kalyar, M.A. and Raza, Z.A.: Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science 58 (2018): 2119-2132.
  • 19. Stammen, J.A., Williams, S., Ku, D.N. and Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22 (2001) 799-806.
  • 20. Squillace, O., Fong, R., Shepherd, O., Hind, J., Tellam, J., Steinke, N.-J., et al.: Influence of PVAc/PVA Hydrolysis on Additive Surface Activity. Polymers 12 (2020) 205.
  • 21. Marten, F.L.: Vinyl alcohol polymers. Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.
  • 22. Mansur, H.S., Oréfice, R.L. and Mansur, A,A.: Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45 (2004) 7193-7202.
  • 23. Lenney, W.E. and Iacoviello, J.G.: Vinyl acetate-ethylene copolymer emulsions prepared in the presence of a stabilizing system of a low molecular weight polyvinyl alcohol and a surfactant. Google Patents (1990).
  • 24. Tang, X. and Alavi S.; Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate polymers 85 (2011) 7-16.
  • 25. Daw, S., Basu, R.K. and Das, S.K.: Red mud reinforced polyvinyl alcohol composite films: synthesis, chemical, mechanical and thermal properties. SN Applied Sciences 1 (2019) 625.
  • 26. Aslam, M., Kalyar, M.A. and Raza ZA.: Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polymer Bulletin 76 (2019) 73-86.
  • 27. Lee, S.-Y., Mohan, D.J., Kang, I.-A., Doh, G.-H., Lee, S. and Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers and Polymers 10 (2009) 77-82.
  • 28. Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U. and Intasanta, V.: Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydrate polymers 138 (2016) 156-165.
  • 29. Chi, F., Hu, S., Xiong, J. and Wang, X.: Adsorption behavior of uranium on polyvinyl alcohol-g-amidoxime: Physicochemical properties, kinetic and thermodynamic aspects. Science China Chemistry 56 (2013) 1495-1503.
  • 30. Hou, R., Zhang, G., Du, G., Zhan, D., Cong, Y., Cheng, Y., et al.: Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B: Biointerfaces 103 (2013) 318-325.
  • 31. Li, Y., Yang, T., Yu, T., Zheng, L. and Liao K.: Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. Journal of Materials Chemistry 21 (2011) 10844-10851.
  • 32. Wang, J., Cheng, Q., Lin, L., Chen, L. and Jiang L.: Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5 (2013) 6356-6362.
  • 33. Jeong, J.S., Moon, J.-S., Jeon, S.Y., Park, J.H., Alegaonkar, P.S. and Yoo, J.B.: Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515 (2007) 5136-5141.
  • 34. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., et al.: Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials 19 (2009) 2297-2302.
  • 35. El Miri, N., El Achaby, M., Fihri, A., Larzek, M., Zahouily, M., Abdelouahdi, K., et al.: Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydrate polymers 137 (2016) 239-248.
  • 36. Zhang, J., Wang, J., Lin, T., Wang, C.H., Ghorbani, K., Fang, J., et al.: Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers–graphene oxide tethered with magnetic Fe3O4 nanoparticles. Chemical Engineering Journal 237 (2014) 462-468.
  • 37. Peng, Z. and Kong, L.X.: A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability 92 (2007) 1061-1071.
  • 38. Li, J., Li, Y., Song, Y., Niu, S. and Li, N.: Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. Ultrasonics Sonochemistry 39 (2017) 853-862.
  • 39. Kaboorani, A. and Riedl, B.: Improving performance of polyvinyl acetate (PVA) as a binder for wood by combination with melamine based adhesives. International Journal of Adhesion and Adhesives. 31 (2011) 605-611.
  • 40. Rowe, A.A., Tajvidi, M. and Gardner, D.J.: Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). Journal of Thermal Analysis and Calorimetry 126 (2016) 1371-1386.
  • 41. Chen, W., Tao, X., Xue, P. and Cheng, X.: Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Applied Surface Science 252 (2005) 1404-1409.
  • 42. Huang, Y., Zheng, Y., Song, W., Ma, Y., Wu, J. and Fan, L.: Poly (vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly (vinyl alcohol) composite hydrogels. Composites Part A: Applied Science and Manufacturing 42 (2011) 1398-1405.
  • 43. Angjellari, M., Tamburri, E., Montaina, L., Natali, M., Passeri, D., Rossi, M., et al.: Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Materials & Design 119 (2017) 12-21.
  • 44. Varga, M., Stehlik, S., Kaman, O., Izak, T., Domonkos, M., Lee, D., et al. Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119 (2017) 124-132.
  • 45. Yu. Godovsky, D., Varfolomeev, A.V., Efremova, G.D., Cherepanov, V.M., Kapustin, G.A., Volkov, A.V. and Moskvina, M.A.: Magnetic properties of polyvinyl alcohol‐based composites containing iron oxide nanoparticles. Advanced Materials for Optics and Electronics 9 (1999) 87-93.
  • 46. Deshmukh, K., Ahamed, M.B., Deshmukh, R.R., Pasha, S.K., Chidambaram, K., Sadasivuni, K.K., Ponnamma, D. and AlMaadeed, M.A.A.: Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polymer-Plastics Technology and Engineering 55 (2016) 1240-1253.
  • 47. Mandal, M.K., Sant, S.B. and Bhattacharya, P.K.: Dehydration of aqueous acetonitrile solution by pervaporation using PVA–iron oxide nanocomposite membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects 373 (2011) 11-21.
  • 48. Roy, A.S., Gupta, S., Sindhu, S. and Parveen. A.: Ramamurthy PC. Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites Part B: Engineering 47 (2013) 314-319.
  • 49. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y. and Shen, G.: Flexible energy‐storage devices: design consideration and recent progress. Advanced Materials 26 (2014) 4763-4782.
  • 50. Choudhary, S.: Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. Journal of Materials Science: Materials in Electronics 29 (2018) 10517-10534.
  • 51. Al-Gunaid, M.Q., Saeed, A.M., Subramani, N.K. and Madhukar, B.S.: Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs 2 CuO 2 nanocomposite films for opto-electronic applications. Journal of Materials Science: Materials in Electronics 28 (2017) 8074-8086.
  • 52. Koosha, M. and Mirzadeh, H.: Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research Part A 103 (2015) 3081-3093.
  • 53. Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner A. and Agarwal, S.: Electrospun nanofiber reinforced composites: A review. Polymer Chemistry 9 (2018) 2685-2720.
  • 54. Teo, W.-E. and Ramakrishna, S.: Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Composites Science and Technology 69 (2009) 1804-1817.
  • 55. Chronakis, I.S.: Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. Journal of Materials Processing Technology 167 (2005) 283-293.
  • 56. Wang, X., Fang, D., Yoon, K., Hsiao, B.S. and Chu, B.: High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. Journal of Membrane Science 278 (2006) 261-268.
  • 57. Xiao, S., Feng, X. and Huang, R.Y.: Investigation of sorption properties and pervaporation behaviors under different operating conditions for trimesoyl chloride-crosslinked PVA membranes. Journal of Membrane Science 302 (2007) 36-44.
  • 58. Vashisth, P. and Pruthi, V.: Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Materials Science and Engineering C 67 (2016) 304-312.
  • 59. Fang, X., Ma, H., Xiao, S., Shen, M., Guo, R., Cao, X., et al.: Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. Journal of Materials Chemistry 21 (2011) 4493-4501.
  • 60. Mollá, S. and Compañ, V.: Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science 372 (2011) 191-200.
  • 61. Koski, A., Yim, K. and Shivkumar, S.: Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58 (2004):493-7.
  • 62. Zhang, C.L., Lv, K.P., Cong, H.P. and Yu, S.H.: Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free‐standing SERS substrates by electrospinning. Small 8 (2012) 648-653.
  • 63. Liu, N., Fang, G., Wan, J., Zhou, H., Long, H. and Zhao, X.: Electrospun PEDOT: PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. Journal of Materials Chemistry 21 (2011) 18962-18966.
  • 64. Yuan, J., Mo, H., Wang, M., Li, L., Zhang, J. and Shen, J.: Reactive electrospinning of poly (vinyl alcohol) nanofibers. Journal of Applied PolymerSscience 124 (2012) 1067-1073.
  • 65. Cho, D., Hoepker, N. and Frey, M.W.: Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Materials Letters 68 (2012) 293-295.
  • 66. Gong, J., Shao, C., Pan, Y., Gao, F. and Qu, L.: Preparation, characterization and swelling behavior of H3PW12O40/poly (vinyl alcohol) fiber aggregates produced by an electrospinning method. Materials Chemistry and Physics 86 (2004) 156-160.
  • 67. El-aziz, A.A., El-Maghraby, A. and Taha, N.A.: Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian Journal of Chemistry. 10 (2017) 1052-1060.
  • 68. Wang, H., Lu, X., Zhao, Y. and Wang, C.: Preparation and characterization of ZnS: Cu/PVA composite nanofibers via electrospinning. Materials Letters 60 (2006) 2480-2484.
  • 69. Puguan, J.M.C., Kim, H.-S., Lee, K.-J. and Kim, H.: Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination 336 (2014) 24-31.
  • 70. Wu, S., Li, F., Wang, H., Fu, L., Zhang, B. and Li, G.: Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51 (2010) 6203-6211.
  • 71. Lue, S.J., Pan, W.-H., Chang, C.-M. and Liu, Y.-L.: High-performance direct methanol alkaline fuel cells using potassium hydroxide-impregnated polyvinyl alcohol/carbon nano-tube electrolytes. Journal of Power Sources 202 (2012) 1-10.
  • 72. Lue, S.J., Mahesh, K., Wang, W.-T., Chen, J.-Y. and Yang, C.-C.: Permeant transport properties and cell performance of potassium hydroxide doped poly (vinyl alcohol)/fumed silica nanocomposites. Journal of membrane science 367 (2011) 256-264.
  • 73. Pan, W.-H., Lue, S,J,, Chang, C.-M. and Liu, Y.-L.: Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell. Journal of membrane science 376 (2011) 225-232.
  • 74. Li, P.C., Liao, G.M., Kumar, S.R., Shih, C.M., Yang, C.C., Wang, D.M. and Lue, S.J.: Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochimica Acta 187 (2016) 616-628.
  • 75. Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C. and Tepore, A.: A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol). Talanta 147 (2016) 124-131.
  • 76. Ajitha, B., Reddy, Y.A.K., Reddy, P.S., Jeon, H.-J. and Ahn, C.W.: Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 6 (2016) 36171-36179.
  • 77. Kumar, D., Umrao, S., Mishra, H., Srivastava, R.R., Srivastava, M., Srivastava, A. and Srivastava, S.K.: Eu: Y2O3 highly dispersed fluorescent PVA film as turn off luminescent probe for enzyme free detection of H2O2. Sensors and Actuators B: Chemical 247 (2017) 170-178.
  • 78. Vasileva, P., Donkova, B., Karadjova, I. and Dushkin, C.; Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 382 (2011) 203-210.
  • 79. Filippo, E., Serra, A. and Manno, D.: Poly (vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical 138 (2009) 625-630.
  • 80. Galeska, I., Kim, T.K., Patil, S.D., Bhardwaj, U., Chatttopadhyay, D., Papadimitrakopoulos, F. and Burgess, D.J.: Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. The AAPS Journal 7 (2005) E231-E240.
  • 81. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: Progress and challenges. Polymer 49 (2008) 1993-2007.
  • 82. Fredenberg, S., Wahlgren, M., Reslow, M. and Axelsson, A.: The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. International Journal of Pharmaceutics. 415 (2011) 34-52.
  • 83. Zhang X., Tang, K. and Zheng, X.: Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. Journal of Bionic Engineering 13 (2016) 143-149.
  • 84. Nugent, M.J. and Higginbotham, C.L.: Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 67 (2007) 377-386.
  • 85. Lee, P.-J., Ho, C.-C., Hwang, C.-S. and Ding, S.-J.: Improved physicochemical properties and biocompatibility of stainless steel implants by PVA/ZrO2-based composite coatings. Surface and Coatings Technology 258 (2014) 374-380.
  • 86. Wu, W., Wu, Z., Yu, T., Jiang, C. and Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials. 16 (2015) 023501.
  • 87. Mittal, V.: Polymer nanotubes nanocomposites: synthesis, properties and applications: John Wiley & Sons; (2014).
  • 88. Krishnamoorti, R. and Vaia, R.A.: Polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics 45 (2007) 3252-3256.
  • 89. Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V. and Kudryavtsev, Y.V.: New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews 82 (2013) 303.
  • 90. Ma, L.-J., Liu, Y. and Zhang, J.-H.: Modification of PVA-based compos-ite coating packaging material with nano-SiO2, Nano-TiO2 and liquid paraffin. Food Science 34 (2013) 341-346.
  • 91. Li, J., Shao, L., Zhou, X. and Wang, Y.: Fabrication of high strength PVA/rGO composite fibers by gel spinning. Rsc Advances 4 (2014) 43612-43618.
  • 92. Ponnamma, D., Parangusan, H., Deshmukh, K., Kar, P., Muzaffar, A., Pasha, S.K., Ahamed, M.B. and Al-Maadeed, M.A.A.: Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polymer-Plastics Technology and Materials 59 (2020) 1-62.
  • 93. Raza, A., Wang, J., Yang, S., Si, Y. and Ding, B.: Hierarchical porous carbon nanofibers via electrospinning. Carbon Letters (Carbon Lett) 15(2014) 1-14.
  • 94. Raj, D.R., Prasanth, S., Vineeshkumar, T. and Sudarsanakumar, C.: Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Optics Communications 340 (2015) 86-92.
  • 95. Kamoun, E.A., Kenawy, E.-R.S. and Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research 8 (2017) 217-233.
  • 96. Karami, H., Aminifar, A., Tavallali, H. and Namdar, Z.-A.: PVA-based sol–gel synthesis and characterization of CdO–ZnO nanocomposite. Journal of Cluster Science 21 (2011) 1-9.
  • 97. Dhanasekar, M., Jenefer, V., Nambiar, R.B., Babu, S.G., Selvam, S.P., Neppolian, B. and Bhat, S.V.: Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Materials Research Bulletin 97 (2018) 238-243.
  • 98. Ananth, A.N., Daniel, S.K., Sironmani, T.A. and Umapathi, S.: PVA and BSA stabilized silver nanoparticles based surface–enhanced plasmon resonance probes for protein detection. Colloids and Surfaces B: Biointerfaces 85 (2011) 138-144.
  • 99. Goenka, S., Sant, V. and Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release 173 (2014) 75-88.
  • 100. Zulkifli, F.H., Hussain, F.S.J., Zeyohannes, S.S., Rasad, M.S.B.A. and Yusuff, M.M.: A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Materials Science and Engineering: C 79 (2017) 151-160.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82883d3c-f563-47ca-ae9d-a6236fb360fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.