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Abstract. In this work, we are concerned with the existence of solutions for the following
ϕ -Laplacian boundary value problem on the half-line

(ϕ(x′))′ = f(t, x, x′), x(0) = 0, x′(∞) = 0,

where f : R+ × Rk × Rk → Rk is continuous. The results are proved using the properties of
the Leray-Schauder topological degree.

Keywords: half-line, nonlinear, asymptotic boundary value problem, ϕ-Laplacian,
Leray-Schauder degree.

Mathematics Subject Classification: 34B15, 34B40.

1. INTRODUCTION

Our aim is to study the existence of solutions for the following system of k BVPs

(ϕ(x′))′ = f(t, x, x′), x(0) = 0, x′(∞) = 0, (1.1)

where f : R+ × Rk × Rk → Rk is continuous.
The function ϕ : Rk → Rk defines various boundary value problems associated

with Laplacian-type operators. First, we shall assume that

ϕ(s) =
{
β(|s|)
|s| s, s 6= 0,

0, s = 0,
(1.2)

where β : [0,∞)→ [0,∞) is continuous, increasing, β(0) = 0 and β(∞) =∞. Observe
that ϕ is a generalization of a p−Laplacian operator of the form: ψp(s) = |s|p−2s, for
s 6= 0, ψp(0) = 0, s ∈ Rk, p > 1. The function ϕ defined by (1.2) has two properties:
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strict monotonicity and coercivity and thus is a homeomorphism from Rk onto Rk
(comp. [10,11]).

In the second case,
ϕ(s) = (ϕ1(s1), . . . , ϕk(sk)) (1.3)

is such that ϕi(si) is a one dimensional increasing homeomorphism with ϕi(0) = 0,
i = 1, . . . , k. In this case ϕ contains the following version of a p−Laplacian operator:
ϕ(s) = (ϕp1(s1), . . . , ϕpk

(sk)), i = 1, . . . , k, s ∈ Rk, pi > 1 and ϕpi
: R→ R is the one

dimensional pi-Laplacian.
The BVP (1.1) with ϕ(s) = s has been extensively studied in the literature. For

instance, in [12] the authors established the existence of unbounded solutions. Results
for problems where the nonlinearity may change sign one can find for example in
[8, 14]. In [13], the asymptotic boundary condition x′ (∞) = 0 is replaced by x ∈
H2(R+). In [1–4, 6] authors also obtained some existence results for such problems.
By applying a diagonalization procedure, in [5] authors established the existence of
bounded solutions.

Recent papers have also investigated the case of the so-called p-Laplacian operator
ϕ(s) = |s|p−2s, p > 1 (see for instance [9]).

In [7], authors considered a homeomorphism ϕ and proved the existence of at least
one positive solution by application of the method of upper and lower solutions.

Known results for the BVP (1.1) refer to the scalar case. The problem (1.1) with
ϕ given by (1.2) has not been studied so far. In the case when ϕ is given by (1.3)
our assumptions are of a completely different kind. The most important here is the
choice of the space (different than in the cited papers), which enabled us to get the
existence under only two conditions: a linear growth condition and a sign condition
for the nonlinear term f .

2. PRELIMINARIES

Throughout the paper | · | will denote the Euclidean norm on Rk (or alternatively
on R), while the scalar product in Rk corresponding to the Euclidean norm will be
denoted by ( · | · ). Let R+ := [0,∞). Denote by C1 (R+,Rk

)
the Banach space of all

continuous functions x : R+ → Rk which have continuous first derivatives x′.
In order to apply known topological methods, we need an appropriate Banach

space. Let
X =

{
x ∈ C1 (R+,Rk

) ∣∣∣ x(0) = 0, lim
t→∞

x′ (t) = 0
}

with the norm
‖x‖X = sup

t∈R+

|x′ (t)| .

Remark 2.1. Notice that the above norm is actually of the form

‖x‖X = max
{
|x (0)| , sup

t∈R+

|x′ (t)|
}

but, since x(0) = 0, it is simplified.
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The convergence of the sequence (xn) in the space X means: (xn|K) is uniformly
convergent for any compact set K ⊂ [0,∞) and (x′n) is uniformly convergent.

Observe that X is a space of functions such that: if x ∈ X and ‖x‖X = M , then

|x (t)| ≤Mt, (2.1)

for any t ∈ [0,∞). Indeed, we have

|x (t)| ≤ t sup
t∈R+

|x′ (t)|+ |x (0)| ≤Mt.

The following theorem gives a compactness criterion in X:
Theorem 2.2 ([14]). For a set A ⊂ X to be relatively compact, it is necessary and
sufficient that:
(1) there exists M > 0 that for any x ∈ A and t ∈ [0,∞) we have |x′ (t)| ≤M ;
(2) for each d > 0, the family Ad :=

{
x′
∣∣[0,d] : x ∈ A

}
is equicontinuous;

(3) for any ε > 0 there exists S > 0 such that for all t ≥ S and x ∈ A we have
|x′(t)| ≤ ε.

Now, let us consider the asymptotic BVP (1.1).
By a solution to the problem (1.1) we mean a function x ∈ X with ϕ(x′) ∈

C1(R+,Rk), which satisfies the equation of (1.1) on (0,∞).

The following assumptions will be needed throughout the paper:
(i) f : R+ × Rk × Rk → Rk is continuous;
(ii) |f (t, x, y)| ≤ a (t) |x|+ b (t) |y|+ c (t), where a, b, c are nonnegative functions and∫∞

0 sa (s) ds <∞,
∫∞

0 b (s) ds <∞,
∫∞

0 c (s) ds <∞.
The BVP (1.1) is nonresonant, i.e. for f = 0, there is no nontrivial solutions.

Hence, the problem is invertible.
Integrating both sides of equation (ϕ(x′))′ = f(t, x, x′) from 0 to t, we get

ϕ(x′(t)) = ϕ(x′(0)) +
t∫

0

f(s, x(s), x′(s))ds.

Since x′(∞) = 0, we get

ϕ(x′(0)) = −
∞∫

0

f(s, x(s), x′(s))ds.

Hence, we obtain

x′(t) = ϕ−1


−

∞∫

t

f(s, x(s), x′(s))ds


 . (2.2)
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Now, integrating (2.2) from 0 to t, we have

x(t) =
t∫

0

ϕ−1


−

∞∫

s

f(u, x(u), x′(u))du


 ds.

Now, is easy to see that the following lemma holds:

Lemma 2.3. Let (i) hold. A function x ∈ X is a solution to the problem (1.1) if and
only if x satisfies the following integral equation

x(t) =
t∫

0

ϕ−1


−

∞∫

s

f(u, x(u), x′(u))du


 ds.

Let
∞∫

0

sa (s) ds = M1,

∞∫

0

b (s) ds = M2,

∞∫

0

c (s) ds = M3. (2.3)

Hence, under assumption (ii), (2.1) and (2.3), we get
∣∣∣∣∣∣
−
∞∫

t

f (s, x (s) , x′ (s)) ds

∣∣∣∣∣∣
≤

≤
∞∫

0

a (s) |x (s)| ds+
∞∫

0

b (s) |x′ (s)| ds+
∞∫

0

c (s) ds ≤

≤M
∞∫

0

sa (s) ds+M

∞∫

0

b (s) ds+
∞∫

0

c (s) ds ≤

≤M (M1 +M2) +M3 <∞.

(2.4)

Now, let T : [0, 1]× X→ X be such that

T (λ, x) (t) :=
t∫

0

ϕ−1


−λ

∞∫

s

f(u, x(u), x′(u))du


 ds. (2.5)

Then

T (λ, x)′ (t) = ϕ−1


−λ

∞∫

t

f(s, x(s), x′(s))ds


 . (2.6)

The functions T, (T )′ are continuous. Moreover, (T (λ, x))(0) = 0 and
(T (λ, x))′ (∞) = 0. Finally, by (2.4), it follows that the operator T is well-defined.
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Let xn ⊂ X, (xn)→ x and λn → λ. Observe that

∞∫

0

|λnf (s, xn (s) , x′n (s))− λf (s, x (s) , x′ (s))| ds <∞,

which is clear from (2.4). From (2.6), the fact that ϕ is a homeomorphism and the
Lebesgue Dominated Convergence Theorem the operator T is continuous.

Now, we shall prove that T is completely continuous.

Lemma 2.4. Under assumptions (i) and (ii) the operator T is completely continuous.

Proof. For the proof is sufficient to show that the image of

B := {(λ, x) ∈ [0, 1]× X | ‖x‖X ≤M}

under T is relatively compact.
First, observe that condition (1) of Theorem 2.2 holds true. Indeed, from (2.4) we

know that there exists L > 0 such that for any x ∈ B, t ∈ [0,∞) and λ ∈ [0, 1] we
have

∣∣(T (λ, x))′ (t)
∣∣ ≤ L.

Now, we will prove condition (2). By assumption (ii) we get that for every ε > 0
there exists δ1 > 0 such that, if |t− t0| < δ1 then

∫max{t0,t}
min{t0,t} sa (s) ds < ε

3M , δ2 > 0
such that, if |t− t0| < δ2 then

∫max{t0,t}
min{t0,t} b (s) ds < ε

3M , and δ3 > 0 such that, if
|t− t0| < δ3 then

∫max{t0,t}
min{t0,t} c (s) ds < ε

3 . Let δ = min {δ1, δ2, δ3}. Hence, we obtain
∣∣∣∣∣∣
−
∞∫

t

λf (s, x (s) , x′ (s)) ds+
∞∫

t0

λf (s, x (s) , x′ (s)) ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣

t∫

t0

λf (s, x (s) , x′ (s)) ds

∣∣∣∣∣∣
≤

max{t0,t}∫

min{t0,t}

|f (s, x (s) , x′ (s))| ds

≤M
max{t0,t}∫

min{t0,t}

sa (s) ds+M

max{t0,t}∫

min{t0,t}

b (s) ds+
max{t0,t}∫

min{t0,t}

c (s) ds

< M
ε

3M +M
ε

3M + ε

3 = ε

As ϕ is a homeomorphism, one can see that (Tx)′ is equicontinuous on [0, d].
It remains to prove condition (3). By assumption (ii) for every ε > 0 there exists

t1, t2, t3 large enough and such that

∞∫

t1

sa (s) ds < ε

3M ,

∞∫

t2

b (s) ds < ε

3M

∞∫

t3

c (s) ds < ε

3 .
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Let S = max {t1, t2, t3}. For t ≥ S we get
∣∣∣∣∣∣
−
∞∫

t

λf (s, x (s) , x′ (s)) ds

∣∣∣∣∣∣
≤M

∞∫

S

s a (s) ds+M

∞∫

S

b (s) ds+
∞∫

S

c (s) ds

< M
ε

3M +M
ε

3M + ε

3 = ε.

Since ϕ is a homeomorphism, we get condition (3) of Theorem 2.2, what completes
the proof.

3. EXISTENCE THEOREMS

Theorem 3.1. Let assumptions (i)–(ii) hold. Moreover, assume that

(iii) there exists M > 0 such that (y | f (t, x, y)) > 0 for t ≥ 0 , x, y ∈ Rk and
|y| ≥M .

Then the problem (1.1) with ϕ given by (1.2) has at least one solution.

Proof. Consider the following family of BVPs:

(ϕ(x′))′ = λf (t, x, x′) , x (0) = 0, lim
t→∞

x′ (t) = 0, (3.1)

depending on a parameter λ ∈ [0, 1]. Then the problem (3.1) is equivalent to an
integral equation

x (t) :=
t∫

0

ϕ−1


−λ

∞∫

s

f(u, x(u), x′(u))du


 ds.

By Lemma 2.4, we get that operator

T (λ, x)(t) :=
t∫

0

ϕ−1


−λ

∞∫

s

f(u, x(u), x′(u))du


 ds

is completely continuous. Let us consider homotopy H : [0, 1]× X→ X given by

H (λ, x) = x− T (λ, x)

in the ball Ω = B (0,M), where M is the positive constant from assumption (iii).
If H (λ, x) = 0 for λ = 0 and x ∈ ∂Ω, then the BVP (3.1) has only a trivial

solution, which does not lie on the boundary of Ω, a contradiction.
Assume that H (λ, x) = 0 for λ ∈ (0, 1] and x ∈ ∂Ω. Let us consider a function

ψ(t) := (β(|x′(t)|))2 =
(
β(|x′(t)|)
|x′(t)| x′(t)

∣∣∣∣
β(|x′(t)|)
|x′(t)| x′(t)

)
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and observe that limt→∞ ψ (t) = 0. Hence ψ has a maximum equal to β2(M) for
certain t0 ∈ R+. If t0 = 0, then from assumption (iii) and the fact that |x′ (0)| = M ,
we have

0 ≥ ψ′ (0) = 2λβ(|x′(0)|)
|x′(0)| (x′(0) | f(0, x(0), x′(0))) > 0,

a contradiction. If t0 > 0, then by (iii) we also reach a contradiction

0 = ψ′ (t0) > 0.

Hence homotopy H does not vanish on the boundary of Ω for λ > 0. Finally
H (λ, x) 6= 0 for λ ∈ [0, 1] and x ∈ ∂Ω.

Therefore, by the properties of the Leray-Schauder topological degree, we have

deg (I − T (1, ·),Ω) = deg (H (1, ·) ,Ω) = deg (H (0, ·) ,Ω) = deg (I,Ω) = 1 6= 0.

Hence T (1, ·) has a fixed point in Ω, what means that the problem (1.1) has at least
one solution.

Theorem 3.2. Let assumptions (i)–(ii) hold. Moreover, let f satisfy the following
condition

(iii) there exists Mi > 0 such that yi · fi (t, x, y) > 0 for t ≥ 0 , x, y ∈ Rk and
|yi| ≥Mi, i = 1, . . . , k.

Then the problem (1.1) with ϕ given by (1.3) has at least one solution.

Proof. A part of the proof of this theorem is similar to the proof of Theorem 3.1.
Therefore, we consider here only that part of the proof, which differs from the previous
one. Set

Ω =
{
x ∈ X

∣∣∣∣∣ sup
t∈R+

|x′i(t)| < Mi, i = 1, . . . , k
}
,

where Mi are as in (iii).
Assume that H (λ, x) = 0 for λ ∈ (0, 1] and x ∈ ∂Ω. This means that for some

index i ∈ {1, . . . , k} we have supt∈R+ |x′i(t)| = Mi.
Let us consider a function x′i(t). If for some t0 the function x′i(t) has a maximum

equal to ±Mi, then ϕi(x′i(t0)) has a maximum too. Hence, we get (ϕi(x′i(t0)))′ = 0.
On the other hand, by (iii), we have

0 = x′i(t0)(ϕi(x′i(t0)))′ = λ x′i(t0)fi(t0, x(t0), x′(t0)) > 0,

a contradiction.
Now, let x′i(0) = Mi and let x′i be decreasing on a neighborhood of zero. Then, by

(iii) we also reach a contradiction. Indeed, we have (ϕi(x′i(t0)))′ < 0 and

0 > x′i(0)(ϕi(x′i(0)))′ = λ x′i(0)fi(0, x(0), x′(0)) > 0.

The proof of the case when x′i(0) = −Mi follows in the same way.
Finally, the homotopy H does not vanish on the boundary of Ω for λ (0, 1].
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Example 3.3. Let us consider the problem (1.1), where

f(t, (x1, x2), (y1, y2)) = α(t)g(x1, x2) (y1 + y2, y2 − y1 + 1) .

Moreover, assume that

— α is positive, continuous and integrable on [0,∞);
— function g : R2 → R is continuous;
— there exist l, L > 0 such that the function g satisfies l ≤ g(x1, x2) ≤ L.
Obviously, (i) holds. Moreover, one can see that

|f(t, (x1, x2), (y1, y2))| ≤
√

2Lα(t) |y|+ Lα(t).

Hence, assumption (ii) is satisfied. It remains to show that assumption (iii) of Theo-
rem 3.1 holds. Indeed, for any M > 1 and |y| ≥M we get

((y1, y2) | f(t, (x1, x2), (y1, y2))) ≥ lα(t)
(
y2

1 + y2
2 + y2

)
.

Observe that y2
1 + y2

2 + y2 > 0 for y2 ∈ (−∞,−1] ∪ [0,∞). If y2 ∈ (−1, 0), we get

((y1, y2) | f(t, (x1, x2), (y1, y2))) > lα(t)(1 + y2) > 0.

Finally, ((y1, y2) | f(t, (x1, x2), (y1, y2))) > 0.
Hence, by Theorem 3.1, there exists at least one nontrivial solution of the

BVP (1.1).
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