PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of spray distance on the microstructure and corrosion resistance of WC - based coatings sprayed by HVOF

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cermet coatings provide protection against aggressive operating environment of machine and device elements, such as corrosion, wear or high-temperature conditions. Currently WC-based cermet coatings are frequently used in the different industry branches. In this work, conventional WC-based powders (WC-Co and WC-Co-Cr) were sprayed with High Velocity Oxy Fuel (HVOF) onto AZ31 magnesium alloy with different spray distances (320 and 400 mm). The aim of the research was to investigate the effect of the spray distance on the microstructure of the coatings, phase composition and electrochemical corrosion resistance. Results revealed that higher spray distance results in greater porosity, 1.9% and 2.3% for 320 mm and 2.8% and 3.1% for 400 mm in case of WC-Co and WC-Co-Cr coatings, respectively. Also the influence has been observed for coatings microhardness, c.a. 1300 HV0.3 for shorter spray distance, whereas for longer one it was less than 1100 HV0.3. The corrosion resistance estimated in potentiodynamic polarization measurements was the best for WC-Co-Cr coating deposited from the shorter spray distance, corrosion current density was equal to 2.9 µA·cm-2 and polarization resistance was equal to 8424 Ω∙cm2.
Rocznik
Strony
art. no. e144610
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, ul. Łukasiewicza 5, 50-371 Wroclaw, Poland
autor
  • Silesian University of Technology, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6B, 44-100 Gliwice, Poland
  • Polish Academy of Sciences, Centre of Polymer and Carbon Materials, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  • Silesian University of Technology, Laboratory of the Testy Materials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • “RESURS” Company, A. Radziszewski, ul. Czarodzieja 12, 03-116 Warszawa, Poland
Bibliografia
  • [1] X. Yang et al., “Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process,” Mater. Sci. Eng. A, vol. 774, pp. 1–9, 2020, doi: 10.1016/j.msea.2020.138942.
  • [2] Y. Mazaheri, M. Mahdi, J. Akbar, H. Amir, and R. Jahani, “Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing,” Tribol. Int., vol. 143, pp. 1–14, 2020, doi: 10.1016/j.triboint.2019.106062.
  • [3] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, and F. Pan, “Research advances in magnesium and magnesium alloys worldwide in 2020,” J. Magnes. Alloy., vol. 9, pp. 705–747, 2021, doi: 10.1016/J.JMA.2021.04.001.
  • [4] Y. Fouad and M. El Batanouny, “Effect of surface treatment on wear behavior of magnesium alloy AZ31,” Alex. Eng. J., vol. 50, pp. 19–22, 2011, doi: 10.1016/j.aej.2011.01.003.
  • [5] C. Taltavull, A.J. Lopez, B. Torres, A. Atrens, and J. Rams, “Optimization of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy,” Mater. Corros., vol. 66, pp. 423–432, 2015, doi: 10.1002/maco.201407982.
  • [6] G. Song and Z. Xu, “The surface, microstructure and corrosion of magnesium alloy AZ31 sheet,” Electrochim. Acta, vol. 55, pp. 4148–4161, 2010, doi: 10.1016/j.electacta.2010.02.068.
  • [7] G. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Adv. Eng. Mater., vol. 1, pp. 11–33, 1999, doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N.
  • [8] D.K. Dwivedi, “Surface Engineering. Enhanced Life of Tribological Components,” Springer, 2018.
  • [9] N. Espallargas, Ed., “Future Development of Thermal Spray Coatings. Types, Designs, Manufacture and Applications,” Woodhead Publishing, Elsevier, 2015, pp. 1–13, doi: 10.1016/B978-0-85709-769-9.09988-7.
  • [10] J.F. Nie, “Precipitation and Hardening in Magnesium Alloys,” Metall. Mater. Trans. A, vol. 43A, pp. 3891–3939, 2012, doi: 10.1007/s11661-012-1217-2.
  • [11] Q.B. Nguyen, Y.H.M. Sim, M. Gupta, and C.Y.H. Lim, “Tribology characteristics of magnesium alloy AZ31B and its composites,” Tribol. Int., vol. 82, pp. 464–471, 2015, doi: 10.1016/j.triboint.2014.02.024.
  • [12] L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, and S. Kozerski, “Review of functionally graded thermal sprayed coatings,” Appl. Sci., vol. 10, p. 5153, 2020, doi: 10.3390/app10155153.
  • [13] L. Pawłowski, “The Science and Engineering of Thermal Spray Coatings,” John Wiley & Sons, Ldt, England, 2008, pp. 67–113, doi: 10.1002/9780470754085.
  • [14] H. Myalska, K. Szymański, and G. Moskal, “Microstructure and properties of WC-Co HVAF coatings obtained from standard, superfine and modified by sub-micrometric carbide powders,” Arch. Metall. Mater., vol. 60, pp. 759–766, 2015, doi: 10.1515/amm-2015-0203.
  • [15] P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, “Thermal Spray Fundamentals: From Powder to Part,” Springer, New York, 2014.
  • [16] R. Szklarek et al., “High temperature resistance of silicidecoated niobium,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, article number: e137416, 2021, doi: 10.24425/bpasts.2021.137416.
  • [17] W. Żórawski, M. Makrenek, and A. Góral, “Mechanical properties and corrosion resistance of HVOF sprayed coatings using nanostructured carbide powders,” Arch. Metall. Mater., vol. 61, pp. 1839–1846, 2016, doi: 10.1515/AMM-2016-0297.
  • [18] L.M. Berger, “Application of hardmetals as thermal spray coatings,” Int. J. Refract. Met. Hard Mater., vol. 49, pp. 350–364, 2015, doi: 10.1016/j.ijrmhm.2014.09.029.
  • [19] V. Singh et al., “Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel,” Surf. Coat. Technol., vol. 432, pp. 1–15, 2022, doi: 10.1016/j.surfcoat.2021.128052.
  • [20] R.S. Lima and B.R. Marple, “Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review,” J. Therm. Spray. Technol., vol. 16, pp. 40–63, 2007, doi: 10.1007/ s11666-006-9010-7.
  • [21] S. Houdkova, M. Kasparova, and F. Zahalka, “The Influence of Spraying Angle on Properties of HVOF Sprayed Hardmetal Coatings,” J. Therm. Spray. Technol., vol. 19, no. 5, pp. 893–901, doi: 2010, doi:10.1007/s11666-010-9514-z.
  • [22] A. Valarezo, K. Shinoda, and S. Sampath, “Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings,” J. Therm. Spray. Technol., vol. 29, pp. 1322–1338, 2020, doi: 10.1007/s11666-020-01073-y.
  • [23] E. Jonda, L. Łatka, and W. Pakieła, “Comparison of Different Cermet Coatings Sprayed on Magnesium Alloy by HVOF,” Materials, vol. 14, p. 1594, 2021, doi: 10.3390/ma14071594.
  • [24] E. Jonda, and L. Łatka, “Comparative Analysis of Mechanical Properties of WC-Based Cermet Coatings Sprayed by HVOF onto AZ31 Magnesium Alloy Substrates,” Adv. Sci. Technol. Res. J., vol. 15, no. 2, pp. 57–64, 2021, doi: 10.12913/22998624/135979.
  • [25] A. Aguero et al., “HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators,” J. Therm. Spray Technol., vol. 20, pp.1292–309, 2011, doi: 10.1007/s11666-011-9686-1.
  • [26] P. Komarov, D. Jech, S. Thachenko, K. Slamecka, K. Dvorak, and L. Celko, “Wetting Behavior of Wear-Resistant WC-Co–Cr Cermet Coatings Produced by HVOF: The Role of Chemical Composition and Surface Roughness,” J. Therm. Spray Technol., vol. 30, pp. 285–303, 2021, doi: 10.1007/s11666-020-01130-6.
  • [27] X. Ding, D. Ke, C. Yuan, Z. Ding, and X. Cheng, “Microstructure and cavitation erosion resistance of HVOF deposited WCCo coatings with different sized WC,” Coatings, vol. 8, no. 307, p. 307, 2018, doi: 10.3390/coatings8090307.
  • [28] W. Tillmann, S. Kuhnt, I.T. Baumann, A. Kalka, E.-C. Becker-Emden, and A. Brinkhoff, “Statistical Comparison of Processing Different Powder Feedstock in an HVOF Thermal Spray Process,” J. Therm. Spray Technol., vol. 31, pp. 1476–1489, 2022, doi: 10.1007/s11666-022-01392-2.
  • [29] H. Wang, Q. Qiu, M. Gee, C. Hou, X. Liu, and X. Song, “Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder,” Mater. Des., vol. 191, p. 108586, 2020, doi: 10.1016/j.matdes.2020.108586.
  • [30] B. Song, J.W. Murray, R.G. Wellman, Z. Pala, and T. Hussain, “Dry sliding wear behaviour of HVOF thermal sprayed WC-Co–Cr and WC-CrxCy-Ni coatings,”Wear, vol. 442–443, p. 203114, 2020, doi: 10.1016/j.wear.2019.203114.
  • [31] M. Górnik, E. Jonda, L. Łatka, M. Nowakowska, and M. Godzierz, “Influence of spray distance on mechanical and tribological properties of HVOF sprayed WC-Co–Cr coatings,” Mat. Sci. Pol., vol. 39, no. 4, pp. 545–554, 2021, doi: 10.12913/22998624/135979.
  • [32] L.A. Luiz et al., “Corrosion Behavior and Galvanic Corrosion Resistance of WC and Cr3C2 Cermet Coatings in Madeira River Water,” J. Therm. Spray Techn., vol. 30, pp. 205–221, 2021, doi: 10.1007/s11666-021-01152-8.
  • [33] L. Qiao, Y. Wu, S. Hong, W. Long, and J. Cheng, “Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying,” Ceram. Int., vol. 47, no. 2, pp. 1829–1836, 2021, doi: 10.1016/j.ceramint.2020.09.009.
  • [34] A. Raza, F. Ahmad, T.M. Badri, M.R. Raza, and K. Malik, “An Influence of Oxygen Flow Rate and Spray Distance on the Porosity of HVOF Coating and Its Effects on Corrosion – A Review,” Materials, vol. 15 6329, 2022, doi: 10.3390/ma15186329.
  • [35] V. Testa, S. Morelli, G. Bolelli, B. Benedetti, P. Puddu, P. Sassatelli, and L. Lusvarghi, “Alternative metallic matrices for WC-based HVOF coatings,” Surf. Coat. Technol., vol. 402, p. 126308, 2020, doi: 10.1016/j.surfcoat.2020.126308.
  • [36] H. Myalska, L. Lusvarghi, G. Bolelli, P. Sassatelli, and G. Moskal, “Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition,” Surf. Coat. Technol., vol. 371, pp. 401–416, 2019, doi: 10.1016/j.surfcoat.2018.09.017.
  • [37] C. Verdon, A. Karimi and J.-L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures,” Mater. Sci. Eng. A, vol. 246, no. 1–2, pp. 11–24, 1998, doi: 10.1016/S0921-5093(97)00759-4.
  • [38] Y.Y. Santana et al., “Characterization and residual stresses of WC-Co thermally sprayed coatings,” Surf. Coat. Technol., vol. 202, no. 18, pp. 4560–4565, 2008, doi: 10.1016/j.surfcoat.2008.04.042.
  • [39] C. Bartuli, T. Valente, F. Cipri, E. Bemporad, and M. Tului, “Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings,” J. Therm. Spray Technnol., vol. 14, pp. 187–95, 2005, doi: 10.1361/10599630523746.
  • [40] J.A. Picas, E. Ruperez, M. Punset, and A. Forn, “Influence of HVOF spraying parameters on the corrosion resistance of WCCoCr coatings in strong acidic environment,” Surf. Coat. Technol., 225:47-57, 2013, doi: 10.1016/J.SURFCOAT.2013.03.015.
  • [41] G. Bolelli et al., “Tribology of HVOF- and HVAF-sprayed WC – 10Co4Cr hardmetal coatings: A comparative assessment,” Surf. Coat Technol., vol. 265, pp. 125–144, 2015, doi: 10.1016/J.SURFCOAT.2015.01.048.
  • [42] M.M. Lachowicz and M. Winnicki, “Corrosion Damage Mechanisms of TiO2 Cold-Sprayed Coatings,” Arch. Metall. Mater., vol. 67, pp. 975–985, 2022, doi: 10.24425/amm.2022.139691.
  • [43] M.A. Osipenko, D.S. Kharytonau, A.A. Kasach, J. Ryl, J. Adamiec, and I.I. Kurilo, “Inhibitive effect of sodium molybdate on corrosion of AZ31 magnesium alloy in chloride solutions,” Electrochem. Acta., vol. 414, p. 140175, 2022, doi: 10.1016/j.electacta.2022.140175.
  • [44] X. Fang, J. Yang, S. Wang, C. Wang, K. Huang, H. Li, and B. Lu, “Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: Microstructure, mechanical property, and electromechanical corrosion performance,” J. Therm. Spray Technol., vol. 300, pp. 117430, 2022, doi: 10.1016/j.jmatprotect.2021.117430.
  • [45] R. Xu, D. Jiang, Y. Zhou, X. Lu, T. Zhang, and F. Wang, “Influence of 2,6-dihydroxybenzoic acid on the corrosion behavior and discharge performance of AZ31 Mg alloy,” Vacuum, vol. 200, p. 111031, 2022, doi: 10.1016/j.vacuum.2022.111031.
  • [46] D. Utu, I. Hulka, V.A. Serban and H. Filipescu. “Corrosion properties of cermet coatings sprayed by high-velocity-oxygen-fuel,” 4th International Conference NANOCON 2012, Czech Republic, 2021, pp. 520–525.
  • [47] S. Shabana, M.M.M. Sarcar, K.N.S. Suman, and S. Kamaluddin, “Tribological and corrosion behavior of HVOF Sprayed WC-Co, NiCrBSi and Cr3C2-NiCr Coatings and analysis using Design of Experiments,” Mater. Today. Proc., vol. 2, no. 4–5, pp. 2654–2665, 2015, doi: 10.1016/j.matpr.2015.07.227.
  • [48] S. Hong et al., “Effect of Spray Parameters on the Corrosion Behavior of HVOF Sprayed WC-Co–Cr Coatings,” J. Mater. Eng. Perform., vol. 23, pp. 1434–1439, 2014, doi: 10.1007/s11665-014-0865-3.
  • [49] J.M. Perry, T. Hodgkiess, and A. Neville, “A Comparison of the Corrosion Behavior of WC-Co–Cr and WC-Co HVOF Thermally Sprayed Coatings by In Situ Atomic Force Microscopy (AFM),” J. Therm. Spray Technol., vol. 11, pp. 536–541, 2002, doi: 10.1361/105996302770348673.
  • [50] V. Testa et al., “Corrosion and wear performances of alternative TiC-based thermal spray coatings,” Surf. Coat. Technol., vol. 438, p. 128400, 2022, doi: 10.1016/j.surfcoat.2022.128400.
  • [51] L.-M. Berger, S. Saaro, T. Naumann, M. Kašparova, and F. Zahálka, “Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC–(W,Cr)2C–Ni hardmetal coatings,” Surf. Coat. Technol., vol. 205, pp. 1080–1087, 2010, doi: 10.1016/j.surfcoat.2010.07.032.
  • [52] U. Selvadurai et al.„ “Influence of the handling parameters on residual stresses of HVOF-sprayed WC-12Co coatings,” Surf. Coat. Technol., vol. 268, pp. 30–35, 2015, doi: 10.1016/j.surfcoat.2014.11.055.
  • [53] H.S. Sidhu, B.S. Sidhu, and S. Prakash, “Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas,” J. Mater. Process. Technol., vol. 171, no. 1, pp. 77–82, 2006, doi: 10.1016/j.jmatprotec.2005.06.058.
  • [54] A.C. Karaoglanli, M. Oge, K.M. Doleker, and M. Hotamis, “Comparison of tribological properties of HVOF sprayed coatings with different composition,” Surf. Coat. Technol., vol. 318, pp. 299–308, 2017, doi: 10.1016/j.surfcowat.2017.02.021.
  • [55] S. Houdkova, O. Blahova, F. Zahalka, and M. Kasparova, “The instrumented indentation study of HVOF sprayed hardmetal coatings,” J. Therm. Spray Technol., vol. 21, no. 1, pp. 77–85, 2012, doi: 10.1007/s11666-011-9677-2.
  • [56] G. Bolelli, L-M. Berger, M. Bonetti, and L. Lusvarghi, “Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC-(W,Cr)2C–Ni and WC-CoCr hard metal coatings,” Wear, vol. 309, no. 1–2, pp. 96–111, 2014, doi: 10.1016/j.wear.2013.11.001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8282f9b9-9765-4887-b314-014952e573ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.