PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modeling of Water Flow in Expansive Soils with Simplified Description of Soil Deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we describe a numerical model of transient water flow in unsaturated expansive soils and the resulting soil volume change. The unsaturated flow equation is solved in a 2D domain using a finite-volume method and an explicit time discretization scheme. Strains in the soil mass are calculated by two simplified approaches, assuming that the strain state is either 1D (in the vertical direction only) or 2D with equal strains in horizontal and vertical directions. The model is applied to two cases described in the literature, in which the strains were computed from the solution of the stress equilibrium equation. It is shown that the simplified methods give results which are reasonably close to the more complex approach based on the equilibrium equations. The proposed model can be used to predict time-varying soil shrinkage and swelling caused by natural and anthropogenic factors.
Rocznik
Strony
301--313
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Narutowicza 11, 80-233 Gdańsk
Bibliografia
  • Adem H. H. (2015) Modulus of elasticity based method for estimating the vertical movement of natural unsaturated expansive soils, PhD thesis, University of Ottawa, Ottawa, Canada.
  • Adem H. H., Vanapalli S. K. (2015) Review of methods for predicting in situ volume change movement of expansive soil over time, Journal of Rock Mechanics and Geotechnical Engineering, 7, 73–86.
  • Alonso E. E., Gens A., Josa A. (1990) A constitutive model for partially saturated soils, Geotechnique, 40, 405-430.
  • Alonso E. E., Pereira J.-M., Vaunat J., Olivella S. (2010) A microstructurally based effective stress for unsaturated soils, Geotechnique, 60, 913–925.
  • Baker R., Frydman S. (2009) Unsaturated soil mechanics: Critical review of physical foundations, Engineering Geology, 106, 26–39.
  • Bishop A. W. (1959) The principle of effective stress, Tecknisk Ukeblad, 39, 859–863.
  • Bolzon G., Schrefler B. A. (1995) State surfaces of partially saturated soils: an effective pressure approach, Applied Mechanics Reviews, 48 (10), 643–649.
  • Briaud J.-L., Zhang X., Moon S. (2003) Shrink test – water content method for shrink and swell predictions, Journal of Geotechnical and Geoenvironmental Engineering, 129, 590–600.
  • Chen F. H. (2012) Foundations on expansive soils, Elsevier.
  • Fredlund D. G., Hung V. Q. (2001) Prediction of volume change in an expansive soil as a result of vegetation and environmental changes, [In:] Vipulanandan C., Addison M. B., Hansen M. (eds.) Proceedings of the ASCE Conference on Expansive Clay Soils and Vegetative Influences on Shallow Foundations, Houston, Texas, USA, Oct. 10–13, 2001, Geotechnical Special Publication 115, 24–43.
  • Fredlund D. G., Morgenstern N. R. (1976) Constitutive relations for volume change in unsaturated soils, Canadian Geotechnical Journal, 13 (3), 261–276.
  • Fredlund D. G., Rahardio H. (1993) Soil mechanics for unsaturated soils, John Wiley & Sons.
  • Fredlund D. G., Rahardjo H., Fredlund M. D. (2012) Unsaturated soil mechanics in engineering practice, John Wiley & Sons.
  • Garbulewski K. (2000) Evaluation of soil expansiveness based on shrinkage properties (in Polish), Inżynieria Morska i Geotechnika, 3, 136–140.
  • Grabowska-Olszewska B., Kaczyński R., Trzciński J., Zboiński A. (1998) Applied geology. Properties of unsaturated soils (in Polish), Wydawnictwo Naukowe PWN, Warszawa.
  • Healy R. W., Essaid H. I. (2012) VS2DI: Model use, calibration, and validation, Transactions of the ASABE, 55 (4), 1249–1260.
  • Hung V. Q., Fredlund D. G. (2002) Using volume change indices for two-dimensional swelling analysis, Proceedings of the 55. Canadian Geotechnical Conference, Niagara Falls, ON, 505–511.
  • Indraratna B., Fatahi B., Khabbaz H. (2006) Numerical analysis of matric suction effects induced by tree roots, Geotechnical Engineering, 159 (2), 77–90.
  • Jommi C. (2000) Remarks on the constitutive modelling of unsaturated soils., [In:] Tarantino A. Mancuso C. (eds.) Experimental evidence and theoretical approaches in unsaturated soils, Balkema, 139–153.
  • Kumor M. K. (2008) Selected geotechnical problems of expansive clays in the area of Poland, Architecture, Civil Engineering, Environment, 4, 75–92.
  • McKeen R. G. (1992) A model for predicting expansive soil behavior, Proc. 7th Int. Conf. on Expansive Soils, Reston, VA, ASCE, Vol. 1, 1–6.
  • Michalski S. (2016) Mathematical modeling of moisture and deformation changes in expansive soils due to influence of trees (in Polish), PhD thesis, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk.
  • Morsi Y. G. Y. (2010) Numerical modeling of expansive soils using uncoupled approach, PhD thesis, Faculty of Engineering, Cairo University.
  • Navarro V., Candel M., Yustres A., Sanchez J., Alonso J. (2009) Trees, soil moisture and foundation movements, Computers and Geotechnics, 36, 810–818.
  • Nelson J. D., Chao K. C., Chao G. K., Overton D. D., Nelson E. J. (2015) Foundation engineering for expansive soils, John Wiley & Sons.
  • Nuth M., Laloui L. (2008) Effective stress concept in unsaturated soils: Clarification and validation of unified framework, International Journal of Numerical and Analytical Methods in Geomechanics, 32, 771–801.
  • Richards L. A. (1931) Capillary conduction of liquids through porous mediums, Physics, 1 (5), 318–333.
  • Sheng D. (2011) Constitutive modeling of unsaturated soils: Discussion of fundamental principles, [In:] Alonso E. E., Gens A. (eds.), Unsaturated soils, Taylor & Francis.
  • Šimunek J., Van Genuchten M. T., Šejna M. (2012) HYDRUS: Model use, calibration, and validation, Transactions of the ASABE, 55 (4), 1263–1274.
  • Szymkiewicz A. (2009) Approximation of internodal conductivities in numerical simulation of one-dimensional infiltration, drainage, and capillary rise in unsaturated soils, Water Resources Research, 45 (10), W10403.
  • Szymkiewicz A. (2013) Modelling water flow in unsaturated porous media: Accounting for nonlinear permeability and material heterogeneity, Springer Verlag, Berlin-Heidelberg.
  • Vanapalli S. K., Lu L. (2012) A state-of-the art review of 1-D heave prediction methods for expansive soils, International Journal of Geotechnical Engineering, 6, 15–41.
  • van Dam J. C., Groenendijk P., Hendriks R. F., Kroes J. G. (2008) Advances of modeling water flow in variably saturated soils with SWAP, Vadose Zone Journal, 7 (2), 640–653.
  • Vu H. Q. (2002) Uncoupled and coupled solutions of volume change problems in expansive soils, PhD thesis, University of Saskatchewan, Saskatoon, Canada.
  • Vu H. Q., Fredlund D. G. (2004) The prediction of one-, two-, and three-dimensional heave in expansive soils, Canadian Geotechnical Journal, 41 (4), 713–737.
  • Wray W. K., El-Garhy B. M., Youssef A. A. (2005) Three-dimensional model for moisture and volume changes prediction in expansive soils, Journal of Geotechnical and Geoenvironmental Engineering, 131 (3), 311–324.
  • Yong R. N. (1999) Soil suction and soil-water potentials in swelling clays in engineered clay barriers, Engineering Geology, 54, 3–13.
  • Zhang X. (2004) Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils, PhD thesis, Texas A&M University.
  • Zhang X., Briaud J. L. (2015) Three dimensional numerical simulation of residential building on shrink-swell soils in response to climatic conditions, International Journal for Numerical and Analytical Methods in Geomechanics, 39 (13), 1369–1409.
  • Zumrawi M. (2013) Swelling potential of compacted expansive soils, International Journal of Engineering Research and Technology, 2 (3), 1–6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82824626-6ff8-403e-9511-7df3ff5a964f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.