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Abstract
In this paper we describe a numerical model of transient water flow in unsaturated expansive
soils and the resulting soil volume change. The unsaturated flow equation is solved in a 2D
domain using a finite-volume method and an explicit time discretization scheme. Strains in the
soil mass are calculated by two simplified approaches, assuming that the strain state is either 1D
(in the vertical direction only) or 2D with equal strains in horizontal and vertical directions. The
model is applied to two cases described in the literature, in which the strains were computed
from the solution of the stress equilibrium equation. It is shown that the simplified methods
give results which are reasonably close to the more complex approach based on the equilibrium
equations. The proposed model can be used to predict time-varying soil shrinkage and swelling
caused by natural and anthropogenic factors.
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1. Introduction

Expansive soils undergo significant volume changes during wetting (swelling) or dry-
ing (shrinkage). They are found in many parts of the world and pose considerable
problems for civil engineers (e.g. Chen 2012, Nelson et al 2015). Expansive properties
of soils are usually due to the presence of clay minerals from the smectite group (e.g.
montmorillonite or beidellite). Many clays occurring in Poland show expansive be-
havior, especially the Pliocene clays from the Bydgoszcz and Poznań regions, where
they are encountered at shallow depths. Volume changes in such soils can be trig-
gered by a variety of factors related to both natural conditions and human activity,
e.g. seasonal weather changes, planting or removing trees in the vicinity of buildings,
excavations, leakage from pipelines or sewers(Kumor 2008). Reliable prediction of
swell and shrink processes is an important task in geotechnical practice, it also con-
stitutes a non-trivial scientific problem, due to the interaction between water flow and
deformation, which must be considered in the framework of unsaturated soil mechan-
ics (e.g. Fredlund et al 2012).
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Over the years, many methods for estimating volume changes in expansive
soils have been proposed in the literature (for an overview see e.g. works by
Grabowska-Olszewska et al 1998, Morsi 2010, Vanapalli and Lu 2012, Fredlund et
al 2012, Adem 2015, Adem and Vanapalli 2015). They can be broadly divided into
three groups, differing in their complexity:

I. The first group of methods is based on the solution of stress equilibrium equations,
with appropriate constitutive models describing stress-strain relationships.The
equilibrium equations are coupled with an equation describing soil water flow.This
is the most general, but also the most complex and computationally costly ap-
proach, which makes it possible to determine the time evolution of a 3D or 2D
strain field, as influenced by the infiltration of rainfall, evaporation, transpiration
by tree roots or loading by foundations (e.g. Zhang and Briaud 2015, Indraratna
et al 2006).

II. The second group includes analytical methods, which are based on a number of
simplifying assumptions, so that it is possible to compute soil strains without solv-
ing equilibrium equations. The most widely used assumption is that soil deforms
only in the vertical direction (Vanapalli and Lu 2012). Another possibility is to
consider 2D plane strain conditions with equal strains in vertical and horizontal
directions (Navarro et al 2009). In both cases, strains and displacements can be
calculated as a function of changes in soil suction (e.g. McKeen 1992) or water
content (e.g. Garbulewski 2000, Briaud et al 2003) or on the basis of measure-
ments of swelling pressure and swell under load in oedometers (e.g. Nelson et
al 2015). The expected increments in suction or water content can be assumed
a priori, or they can be obtained from the solution of the transient flow equation
(Wray et al 2005).

III. The third group consists of empirical methods in the form of functional relation-
ships between the anticipated vertical strain or displacement due to swell and some
basic geotechnical properties, such as liquid limit, clay fraction content, or natural
water content (e.g. Kumor 2008, Zumrawi 2013). While being a useful engineer-
ing tool, they lack an explicit physical basis and can be considered accurate only
for a particular set of soils for which they have been developed. They are also not
suited to include a variety of possible factors causing swelling and shrinkage.

In terms of practical application, the methods from the second group are particu-
larly interesting, because they are physically based and make it possible to calculate
time-varying soil volume changes without the need to use complex, fully coupled
hydro-mechanical models. These methods can be relatively easily coupled with ex-
isting numerical models for unsaturated water flow (1D, 2D or 3D, depending on the
needs), which often include a detailed representation of soil-vegetation-atmosphere
interactions, necessary to accurately capture soil swelling and shrinkage processes
(e.g. Healy and Essaid 2012, Šimunek et al 2012, van Dam et al 2008) In this con-
text, one of the issues that should be investigated in more detail is how the simplified
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methods of calculating soil deformation based on the assumption of 1D or 2D strain
conditions compare to the solution of full equilibrium equations (i.e. the first group
of methods). Such comparisons are presented in this paper.

Methods from both the first and the second groups require formulation of consti-
tutive models describing soil volume changes as a function of stress variables. The
choice of stress state variables for unsaturated soils remains an open scientific prob-
lem (Nuth and Laloui 2008, Sheng 2011). In unsaturated soils, water is under suction,
i.e. it is bound to the soil skeleton by adsorptive, capillary and osmotic forces, result-
ing in negative (lower than atmospheric) values of measured pore water pressure. As
the soil is dried, the water content decreases, while the suction increases (the water
pressure becoming more negative), because the remaining amounts of water are more
tightly bound to the skeleton by the surface forces. The largest values of suction, cor-
responding to oven-dry soil are commonly reported as 105.25 to 106 kPa (Nelson et
al 2015). The relationship between the soil water content and suction is called the
soil water retention curve (SWRC) or the soil water characteristic curve (SWCC). It
can be expressed with respect to the gravimetric water content w (mass of water /
mass of soil skeleton), the volumetric water content θ (volume of water / volume of
soil) or water saturation Sr (volume of water / volume of pores). In expansive and
compressible soils, the shape of these functions is significantly affected by volume
changes occurring during wetting and drying and by the external stress applied to the
soil sample (Zhang and Briaud 2015).

Constitutive models for deformation of unsaturated soils can be formulated with
respect to either one or two stress variables. In the first case, an effective stress is
used, which combines the total stress and the negative pore water pressure, following
the concept introduced by Bishop (1959). However, it is not clear to what extent the
capillary, adsorptive and osmotic components of suction influence the mechanical
stress state in soil (in dry soils, suction is very large, but does not influence the effective
stress) (Baker and Frydman 2009, Yong 1999). In the second case, usually the total
(net) stress σ and matric (i.e. capillary and adsorptive) suction ψ are chosen as the
principal stress variables (Fredlund and Morgenstern 1976, Fredlund and Rahardjo
1993). The dependence of the gravimetric water content w, water saturation Sr and
void ratio e on s and y is given in the form of constitutive surfaces – Fig. 1.

It is now generally accepted that unsaturated soil behavior can be accurately de-
scribed using either a single stress variable or two variables, on the condition that
the model is of elasto-plastic type (Jommi 2000, Alonso et al 2010). However, ad-
vanced elasto-plastic models usually include a large number of parameters, which
can be difficult to estimate (e.g. Alonso et al 1990, 2010). Thus, simpler models
based on constitutive surfaces, described above, remain a useful tool for prediction
of soil deformations if we can assume either that the soil is elastic or that it under-
goes plastic deformation along a specified monotonous path. Expansive soils can be
considered elastic if the external loads are small (roads, light buildings), the soils are
strongly over-consolidated (due to earlier swell-shrink cycles), and the deformation is
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Fig. 1. Constitutive surfaces for unsaturated expansive soils (from Zhang 2004)

caused mainly by changes in water content and suction, as for example in the case of
cyclic weather changes (Adem 2015, Bolzon and Schrefler 1995). Similarly, long-term
shrinkage caused by planting a new tree or long-term swell caused by cutting down
an existing tree are examples of monotonic loads, which can be described by elastic
parameters (Navarro et al 2009, Indraratna et al 2006, Vu and Fredlund 2004).

This paper presents a numerical model developed by the first author as a part of his
PhD thesis (Michalski 2016). The unsaturated flow equation is solved in a 2D domain
using a finite-volume method and an explicit time discretization scheme. Strains in
the soil mass are calculated using either a 1D or a 2D simplified approach. The model
is applied to two cases described in the literature, in which strains were computed
from the solution of a stress equilibrium equation.

2. Numerical Model

2.1. Main Assumptions

It is assumed that water flow in a two-dimensional unsaturated expansive soil domain
can be described by the Richards’ equation (Richards 1931):
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where the water pressure potential u is the negative of soil suction u = −ψ, k is the
permeability of soil, which,under unsaturated conditions, is variable and can be ex-
pressed as a function of the volumetric water content or suction, and R is the intensity
of water uptake by tree roots. The form of θ(ψ) and k(ψ) functions can be arbitrary, but
their hysteresis is neglected. It is assumed that θ(ψ) includes both saturation changes
and volumetric changes. The coupling between water flow and soil deformation is in
one direction only, i.e. the values of suction obtained by solving Eq. (1) are used to
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calculate the volume change. The total stress in soil is considered constant. The strain
is either one-dimensional (in the vertical direction only) or two-dimensional, with
equal components in vertical and horizontal directions, as explained in more detail in
section 2.3.

2.2. Solution of the Unsaturated Flow Equation

Eq. (1) is solved using finite-volume discretization in space, with a regular, structured
grid consisting of rectangular cells (Fig. 2). For discretization in time, a first-order
explicit scheme is used. While the Richards’ equation is usually solved by implicit
schemes (e.g. Szymkiewicz 2013), explicit schemes have the advantage of low com-
plexity and ease of parallelization. Navarro et al (2009) used an explicit scheme to
study soil shrinkage caused by root water uptake close to a line of trees. Following
the approach described by Michalski (2016), the solution domain is covered by a rect-
angular grid of nodes, associated with the corresponding finite volumes (grid cells).
The discrete form of Eq. (1) can be written as follows:
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where i and j are node (cell) indices, m is a time-step index, ∆t, ∆x and ∆z denote the
discretization steps with respect to the independent variables. Water fluxes q between
nodes are calculated as
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As shown in Eqs. (3), in our study the nodal values of the permeability coefficient
k are averaged arithmetically, although other averaging schemes can be also imple-
mented (e.g. Szymkiewicz 2009). Eq. (2) makes it possible to calculate the value of
water content at each node for a new time step, on the basis of values from the previous
time step. The corresponding values of ψ and k are then obtained from the retention
and permeability functions.

Explicit schemes are only conditionally stable, which means that the length of
the time step is limited. The allowable time step can be calculated using the Courant
criterion (Navarro et al 2009 and personal communication). Michalski (2016) pro-
posed to use another approach, according to which the time-step size can be adjusted
in calculations in such a way that the volumetric water content increment during a
time step at any node is not larger than 0.0001. The algorithm has also been adapted
to axi-symmetric geometries (e.g. moisture changes around a single tree). A more
detailed description of the numerical procedure and its verification by comparison
with an analytical solution can be found in Michalski (2016).
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Fig. 2. Calculation of strains and displacements for 1D case (A) and 2D case (B) (Michalski
2016)

2.3. Calculation of Soil Deformation

Once the values of suction and water content have been obtained from the water flow
equation for a new time step, the corresponding soil deformation is calculated. This
can be carried out assuming either 1D vertical strain or 2D plane strain with equal
strains in each direction. In the first case, the lower boundary of the solution domain
is considered as a fixed boundary, and we calculate the vertical strain and the cor-
responding incremental displacement for each cell of the numerical grid. The dis-
placements of the soil surface are obtained by summing incremental displacements
in each column of the grid (Fig. 2A). In the 2D case, the incremental displacements
are summed along columns and rows, assuming that the lower boundary and one
of the vertical boundaries are fixed (Fig. 2B). While the assumption of 1D vertical
strains is commonly used in models for expansive soils (Vanapalli and Lu 2012), the
assumption of plane strain with εx = εz seems to be considered only by Navarro et al
(2009) in their study of the influence of a line of trees on a parallel row of buildings.
In the following examples, it is shown that the results obtained from a full mechanical
analysis (i.e. the solution of equilibrium equations for plane-strain conditions) partly
fall in between these two cases.

In principle, the strains and displacements can be calculated using any formula
which relates 1D or 2D strain to changes in soil suction or soil water content. The re-
sults shown below were obtained using the constitutive model described by Fredlund
and Rahardjo (1993), in which the general formula for a small increment in the void
ratio is:
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de =
κσ
σ

dσ +
κψ

ψ
dψ, (4)

where κσ and κψ are constant coefficients. Integration of the above equation leads to
a formula for finite increments in the void ratio, which is analogous to the well-known
expression for soil compressibility under saturated conditions:
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where Cσ and Cψ are compressibility indices. The volumetric strain can be expressed
as:
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where E and H are elastic moduli, ν is the Poisson ratio, and mS
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The above equations describe the general case of 3D strain. For plain strain (εyy =

0), it is more convenient to write the constitutive equation in terms of the average
stress σ2D = (σxx + σzz) /2 (Vu and Fredlund 2004):

dεv(2D) = mS
1(2D)dσ2D + mS

2(2D)dψ =
2(1 + ν)(1 − 2ν)

E
dσ2D +

2(1 + ν)
H

dψ. (9)

In the 1D (vertical) strain case (εv = εz) the equation can be rewritten in terms of
the vertical stress σz (Vu and Fredlund 2004):

dεv(1D) = dεz = mS
1(1D)dσz + mS

2(1D)dψ =
(1 + ν)(1 − 2ν)

E(1 − ν)
dσz +

(1 + ν)
H(1 − ν)

dψ. (10)

As already mentioned, only deformation due to suction changes is taken into account
in the present model, so Eqs. (4)–(10) are simplified accordingly.

3. Examples of Calculations

3.1. Example 1: Infiltration

The first example, taken from Hung and Fredlund (2002), concerns 2D infiltration in
a soil mass. The model domain and boundary conditions are shown in Fig. 3. Note
that the boundary conditions for deformation refer to the 2D equilibrium equation
as solved by Hung and Fredlund (2002), while in our simulations we computed the
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Fig. 3. Example 1: Geometry and boundary conditions (Hung and Fredlund 2002)

strains by simplified 1D and 2D approaches, described above. The initial void ratio
was e0 = 1.0, Poisson ratio ν = 0.35, and the compressibility index Cψ = 0.1. The
retention function and the permeability function were given as

θ =
θs

ln
[
en +

(
ψ

a

)n] , k = ks
θ

θs
, (11)

with en denoting the natural logarithm base, the volumetric water content at saturation
θs = 0.45, permeability at saturation ks = 1 mm/day, and parameters a = 100 kPa,
n = 1.5. For purposes of comparison, the parameters from Hung and Fredlund (2002)
are used, although their physical consistency can be questioned (e.g. the volumetric
water content at saturation θs is smaller than the porosity corresponding to the initial
void ratio e0). A uniform numerical grid with node spacing of 20 cm in each direction
was used.

Fig. 4 shows the distribution of soil water suction after 25 days of infiltration.
One can see that the results obtained with the model described in this paper are very
close to the results reported by Hung and Fredlund (2002), which were obtained us-
ing implicit time discretization. This confirms the accuracy of the numerical solution
method. The displacement (heave) of the soil surface obtained assuming 2D and 1D
strain conditions is shown in Fig. 5. As could be expected, the heave values corre-
sponding to the 2D strain assumption are significantly smaller than those for 1D ver-
tical strain (a maximum heave of 144 mm vs. 222 mm). In the left-hand part of the
domain, under the infiltration area, where the heave is largest, the results of Hung
and Fredlund (2002) are in between the 1D and 2D cases (a maximum heave of 200
mm). In the part of the domain away from the infiltration area, the heave predicted by
the simplified methods, especially for the 2D case, is smaller than the one obtained
from the solution of equilibrium equations. This can be attributed to the influence of
the boundary condition CD, which was set to zero horizontal strain in the solution of
Hung and Fredlund (2002).
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Fig. 4. Example 1: Distribution of soil suction after 25 days of infiltration A – obtained with
the model described in this paper, B – reported by Hung and Fredlund (2002)

Fig. 5. Example 1: Comparison of soil surface heave. A – simplified method, 2D strain,
B – simplified method, 1D strain, C – solution of the equilibrium equations reported by Hung

and Fredlund (2002)
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3.2. Example 2: Water Uptake by a Line of Trees

The second example, taken from Fredlund and Hung (2001) and Vu (2002), concerns
water uptake by tree roots and the associated settlement caused by soil shrinkage.
The aim is to obtain the flow and deformation field in a steady state in the vicinity
of a line of trees (Fig. 6). It is assumed that the distance between the trees is equal
to 5 m and each tree transpires 0.3 m3 of water per day, with the transpiration rate
varying linearly between depths of 1 m and 3 m, as shown in Fig. 6. The initial void
ratio is e0 = 1.0, the Poisson ratio ν = 0.3, and the compressibility index Cψ = 0.2.
The steady state solution of Eq. (1) does not depend on the retention function - the
same retention function as in Example 1 was used to reach a steady state in transient
simulation. The permeability function is given by the formula

k = ks
1

1 + α

(
ψ

γw

)β (12)

with permeability at saturation ks = 5 mm/day, the volumetric weight of water γw =

10 kN/m3,ψ given in kPa, and parametersα = 0.001 m−1 and β = 2. The node spacing
was equal to 25 cm in each direction.

Fig. 6. Example 2: Geometry, initial and boundary conditions (Fredlund and Hung (2001) and
Vu (2002))

Similarly to Example 1, the distribution of soil suction obtained by the model
described in this paper was very close to the one given by Fredlund and Hung (2001)
(not shown here). However, differences were observed in terms of the calculated set-
tlements of the soil surface (Fig. 7). The relation between various solutions is consis-
tent with Example 1. The maximum settlement occurs under the trees and is equal to
110 mm for the 1D case and 77 mm for the 2D case, while the solution of equilibrium
equations yields 85 mm. In the zone of large settlements the results of Fredlund and
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Fig. 7. Example 2: Comparison of soil surface settlements. A – simplified method, 2D strain,
B – simplified method, 1D strain, C – solution of the equilibrium equations reported by

Fredlund and Hung (2001)

Hung (2001) are between the results obtained by the simplified 1D and 2D approaches.
Close to the right-hand boundary, the settlement predicted by the equilibrium equation
is larger than that obtained by the simplified methods and the difference is larger for
the 2D method.

4. Conclusions

The model proposed in this paper can be a useful tool for estimation of time-varying
volume change in expansive soils. The solution of the unsaturated flow equation by
the explicit scheme led to results very similar to the widely used implicit time dis-
cretization. Using both 1D and 2D simplified methods of strain calculation one obtains
a range of heave or settlement values which are in reasonable agreement with values
calculated from the equilibrium equations. The same procedure for calculating strains
and displacements can be coupled with other numerical codes solving the unsaturated
flow equation.
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