PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

“Eulerian–Eulerian” versus “Eulerian–Lagrangean” Models of Condensation

Autorzy
Identyfikatory
Warianty tytułu
PL
Model kondensacji: ,,Eulerian – Eulerian” kontra ,,Eulerian –Lagrangian”
Języki publikacji
EN
Abstrakty
EN
Liquid phase in the flowing vapor through stages of the steam turbine is the cause of a lot of failures. Nowadays, due to work of steam turbines at partial load, process of homogeneous and heterogeneous condensation still is current. The formation of drops of condensate under conditions other than nominal operation of turbine is a process still unknown. Engineers and designers involved in the development of power station machines using condensable working fluids, have a need to better understand the impact of moisture formation on a machine performance and its life time. In meeting this interest the large-scale experiments and measurements are generally most significant and required if the technical process is to beconsidered. Sometime, in these researchers, the numerical tools of Computational Fluid Dynamics (CFD) have become useful, giving a more detailed view on irreversible processes. In the present paper we have focused on the prediction of the spontaneous condensation in wet steam flow. Two main types of nonequilibrium condensation models are considered and compared. These are: Eulerian-Eulerian multi-phase approach and Lagrangean-Eulerian FSI approach.
Czasopismo
Rocznik
Tom
Strony
4463--4473, CD6
Opis fizyczny
Bibliogr. 10 poz., rys., wz.
Twórcy
autor
  • Institute of Fluid Flow Machinery Pas-ci, Gdańsk University of Technology
autor
  • Institute of Fluid Flow Machinery Pas-ci, Gdańsk University of Technology
Bibliografia
  • [1] Zakrzewski W., Karcz M., Kornet S.: Estimatiom of the steam condensation flow via CFD methods, Trans. Inst. Fluid Flow Machinery 112, 1–12, 2012.
  • [2] Zakrzewski W., Nastałek L., Badur J., Jesionek K., Straś K., Masłyk M.:Modeling of the Baumann turbine stage operations, Part I. Flow, Archiwum Energetyki, 33, 24–23 2013.
  • [3] Stodola A.: Undercooling of Steam Through Nozzle, Engineering, pp.643–646, 1915.
  • [4] Gyarmathy G.: Grundlageneiner Theorie der Nassdampfturbine, Dissertation, ETH Zurich, Mitteilung6ausdemInstitut fur Termische Turbomaschinen, pp1–223, 1962, (English Translation: CEGB (London) Rept T-781, 1963).
  • [5] Puzyrewski R., Król T.: Numerical analysis of Hertz-Knudsen model of condensation upon small droplets in water vapour, Trans. Inst. Fluid Flow Machinery, 70–72 , 285–308, 1976.
  • [6] Dykas S., Wróblewski W.: Single- and two-fluid models for steam condensing flow modeling, International Journal of Multiphase Flow 37, 1245–1253, 2011.
  • [7] Gerber A.G., Sigg R., Völker L., Casey M.V. and Sürken N.: Predictions of non-equilibrium chase transition in a model low pressure steam turbine, Proceedings of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy 221, 825–835, 2007.
  • [8] Wróblewski W., Dykas S., Gardzilewicz A., and Kolovratnik M.: Numerical and experimental investigation of steam condensation in LP Part of a large power turbine, J. Fluids Eng.131, p 041301- 1, 2009.
  • [9] Banaszkiewicz M., Badur J.: Gradient theory for the description of interfacial phenomena, TASK Quarterly, 4, 213–290, 2000.
  • [10] Jansen R., Gimelshein N., Gimelshein S., Wysong I.: A Lagrangian Eulerian approach to modeling homogeneous condensation in high density gas expansions, J. Chem. Phys. 134 104105, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8281aad3-1c04-451b-bc5b-23b21bebe778
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.