
Jan Dªugosz University in Cz¦stochowa

Scienti�c Issues, Mathematics XV, Cz¦stochowa 2010

ON SOME SPECIFICATION LANGUAGES

OF CRYPTOGRAPHIC PROTOCOLS

Paweª Dudek, Mirosªaw Kurkowski

Institute of Computer and Information Sciences

Cz¦stochowa University of Technology

ul. D¡browskiego 73, 42-200 Cz¦stochowa, Poland

e-mail: pdudek@icis.pcz.pl, mkurkowski@icis.pcz.pl

Abstract. A key element of the security systems in computer networks are cryp-

tographic protocols (CP). These protocols are concurrent algorithms used to pro-

vide relevant system security goals. Their main purpose is, for example, a mutual

authentication (identi�cation) of communicating parties (users, servers), distribution

of new keys and session encryption. Literature indicates numerous errors in proto-

col constructions. Thus, there is a need to create methods for CP speci�cation and

veri�cation.

In this paper, we investigate a problem of CP speci�cation. The paper discusses

the so-called Common Language � the simplest language of CP speci�cation and

HLPSL � a speci�cation language used in the European veri�cation project Avispa.

Finally, we introduce PTL � the new language developed for CP speci�cation which

allows fully automatic veri�cation.

1. Introduction

It is well known that today each IT system and computer network must meet

certain security properties [6]. CP are now commonly used in various appli-

cations (banking, emails, encrypted Web pages, instant messaging networks,

etc.) for achieving security goals. They are also widely used as essential

components of larger systems such as communication protocols for wider

application. Good examples are the systems of Kerberos, SSL and Zfone.

A pioneering role in the area of CP has the paper published in 1978 by Need-

ham and Schroeder [2]. In their work the authors presented main ideas of

applying cryptographic techniques in order to solve problems related to the

122 Paweª Dudek, Mirosªaw Kurkowski

authentication of communicating parties in communication networks. Sug-

gested layouts of authentication protocols can use symmetric and asymmetric

cryptography.

CP are concurrent algorithms, designed to attain certain speci�c objectives

during the transfer, including the transactions carried out electronically. In

general, these protocols are algorithms whose implementations are performed

in a concurrent way and may be used for cooperating computers, computer

networks or simply across multiple CPUs. This is a signi�cant di�erence

between them and ordinary sequential algorithms. CP can also specify con-

current processes as communicating sequential processes with each other from

time to time through the exchange of data (the parameters) or the use of

common resources. Cryptographic protocols are those concurrent processes,

which work using cryptographic algorithms.

A speci�cation of any cryptographic protocol has to contain:

• the number of parties involved in the protocol,

• the nature of the participation of the parties,

• the goal of the protocol,

• actions comprised in the implementation of the protocol.

Basic security goals which CP need to ensure are the following:

• mutual authentication (con�rmation of identity) of communicating

parties,

• con�dentiality of transmitted information,

• integrity of transmitted data,

• distribution of session key.

Actions performed during the execution of the protocol can be divided

into internal and external ones. External actions are those which rely on the

mutual exchange of transmitted information. Description of those actions will

specify sources of any sent message (senders), recipients of sent messages and

their contents. It must also indicate, respectively, which part of the sent letter

has to be encrypted and how. Internal actions are all the other actions that

each party must perform on its own during the execution of the protocol. As

examples, one can give generating new, con�dential information, encrypting

and deciphering cryptograms, comparing data or performing mathematical

operations on locally held data.

Applying cryptographic protocols in order to ensure adequate security pur-

poses in computer systems requires special attention with regard to the cor-

rectness of their executions. Incorrect work of protocols can lead to di�erent

On some speci�cation languages of cryptographic protocols 123

sorts of losses of users resources [4]. Cryptographic protocols are usually short

and not too complicated in their structure, so often entirely informal argu-

ments are used to justify that they operate properly and to all system users

that the protocol actually does what it is expected to do [2].

In most cases, however, it is di�cult to imagine all possible executions

of these complex systems. This becomes especially di�cult when dealing

with programs that are executed concurrently on many computers, where

the partial results of these performances may a�ect the implementation of the

next instruction. For these reasons, the method of verifying the correctness

of software systems is constantly an extensively developed area of computer

science.

Basically, we can distinguish two main groups of veri�cation methods:

1. Testing of real or virtual systems (simulations).

2. Formal modeling and veri�cation.

In the �rst case, the veri�cation process simply consists in testing the

systems already implemented or simulating their performances by computers

(eg. virtual machines). After carrying out several such tests or simulations,

unfortunately, we can only say that so far the implementation of all programs

works properly.

The second direction of research, namely formal modeling and veri�cation,

involves creating special mathematical structures which model processes tak-

ing place during protocol executions. It is therefore, in some sense, the creation

of a new, speci�c types of simulation. However, as numerous examples show,

this type of modeling can sometimes prove formally that certain undesirable

behavior of the system will never occur.

Creating mathematical structures simulating the implementation of cryp-

tographic protocols is not an easy process. This work, however, requires to

use a specially constructed languages for protocols speci�cation. In [2] a sim-

ple language for the speci�cation of protocols has been applied, known simply

as Common Language (CL) [1, 6]. As an example, we show below protocol

speci�cation using CL and some information about it.

2. Common Language � CL

Common Language has never been formalized. However, the grammar of the

basic version is not too complicated. The protocol is described as a sequence

of steps, specifying the sender of the message, recipient and content of the

sent letter [1].

Each step is speci�ed as follows:

124 Paweª Dudek, Mirosªaw Kurkowski

A → B : M ,

where A is, of course, the sender of the message, B is the recipient and M is

the message.

The grammar of messages is the following:

M : A | T | K | N | L | M,M | < M >K ,

where A belongs to a set of users, K to a set of cryptographic keys, T to the

set of timestamps, L is a life time of T . The keys used in the speci�cation,

of course, may be symmetric or asymmetric. In the �rst case, we denote by

KAB the key, where A and B are their owners; in the second case, the symbol

KA denotes the public key of A and K−1
A its private key. M,M is simply

a concatenation of messages, and by writing < M >K we understand the

ciphertext M encrypted with the key K.

Here, as an example, we show a speci�cation for some version of Kerberos

Protocol using the Common Language. The basic version of this protocol is as

follows: we have two parties A and B, which share the server S with di�erent

secret keys. The main goal of this protocol is to generate by A a session key

in order to conduct communication with B.

Protocol speci�cation:

1. A → S : A,B,

2. S → A : < T,L,K,B >KAS
, < T,L,K,A >KBS

,

3. A → B : < A,T >K , < T,L,K,A >KBS
,

4. B → A : < T >K .

In the �rst step of the protocol, the user A sends to the server S a message

consisting of its identi�er and the name of B. In this way, S possesses infor-

mation with whom A wants to communicate. In the second step, the server

generates two messages with a timestamp T , the ticket duration L and a newly

generated, random session key K. S encrypts all of them using a secret key

shared with B. Then it gets a timestamp, the duration L and the identi�er B,
and encrypts everything using secret key shared with A. Next, S sends two

encrypted messages to A. In the third step, A generates a message containing

its identi�er and timestamp, encrypts them using the session key K newly

obtained from S and sends it to B. A also sends to B a message encrypted

by the server using a common key for B and S. Then B possesses the key K
and creates a message consisting of the timestamp T , encrypts it using K and

sends it to A.

On some speci�cation languages of cryptographic protocols 125

Executing a protocol assumes the existence of an ideal clock allocating

time in compliance with clocks of all users of the server. This is achieved by

synchronizing every few minutes to a secure server clock time. The key server

S needs to remember all the keys that it shares with users. However, the

session key is created for the purpose of communication between A and B,
then the server forgets about the result.

Obviously, as one can see from the above example, CL is very simple and

it is probably di�cult to imagine a simpler protocol speci�cation language.

However, it is important to note that it requires additional information about,

for example, the description of internal actions during the protocol execution,

including generating new elements such as keys, nonces (pseudo-randoms num-

bers generated for a single session) or timestamps. There is also no information

about how users compose sent messages. That is the reason why CL cannot

be used in fully automatic veri�cation.

3. HLPSL Language

Currently, the world's most recognizable system of formal veri�cation of cryp-

tographic protocols is the AVISPA system (Automated Validation of Internet

Security Protocols and Applications) [7, 10]. This system was created through

cooperation of several institutions: Universities of Genova, Zurich, Nancy and

subsidiaries of Siemens in Munich. For this project a special role-based, high-

level language HLPSL for CP speci�cation (High Level Protocol Speci�cation

Language) was created.

In HLPSL each participant has a de�ned primary role (basic role), which

is described by various parameters related to the behavior of participants

during the execution protocol. These roles de�ne how users can transfer their

information during the executions of the protocol. Data included in those roles

determine the information, which a participant can use initially, and the initial

state of the knowledge. Additionally, roles describe how the users knowledge

might change during the execution of the protocol. The speci�cation given in

basic roles can be used later by one or more users who can play a particular role

in the protocol execution. Then, to create the composed roles we describe how

the individual members communicate among themselves by means of repeated

basic roles. In this way, we obtain a speci�cation schema for data exchange

during the whole protocol execution. Roles are independent processes, which

have a speci�c name, replaced by the value of initialization parameters, also

contain local declarations. Actions of simple roles are speci�ed in order to

describe transitions in the form of a change in the role depending on the events

occurred, while the complex roles determine the way in which pre-de�ned roles

are combined.

126 Paweª Dudek, Mirosªaw Kurkowski

The HLPSL speci�cation also de�nes additional parameters of veri�cation.

Additionally, in a batch �le there will be determined security properties which

are to be examined and the size of the protocol performances in the needed

searching space. The declaration and de�nition of the objectives which we

want to achieve during the veri�cation takes place in an another special section

of speci�cation.

HLPSL allows testing of the following security properties:

• maintaining the con�dentiality of the information,

• strong user authentication on the basis of the message,

• weak user authentication based on a certain message.

Fixed data or variable used in speci�cation must have assigned a unique

type. The list of examples of variables is the following:

• agent � for users identi�ers, for the intruder the letter i is reserved,

• public_key � for public keys of agents. Given a public key pk (resp.

private), its reversed private (resp. public) key is obtained through the

structures inv(pk),

• symmetric_key � for keys used in symmetric encryption,

• nat � for the scope of variables of this type the natural numbers are

used. Nat type is usually used to describe states,

• protocol_id � for identi�ers used in the studied properties,

• message � for representing any message,

• text � for nonces.

Correct messages are de�ned as the submission of the concatenation opera-

tion `.' and/or encryption `_' (message_key) of basic data types. There is no

di�erence between the descriptions of symmetric and asymmetric encryptions.

Assuming that we have a type of agent, the agent A, the nonce Na and the

symmetric key K, the following messages are correct:

1. Na � nonce Na is a message,

2. A.Na � the message containing the identi�er of agent A with a value Na,

3. {A.Na}K � the proper message encrypted with the key K.

On some speci�cation languages of cryptographic protocols 127

A channel is a variable that connects communicating parties and exchanges

messages between them. HLPSL's channels contain intruder acting in that

channel. The model available in HLPSL is the well known Dolev-Yao model

[3] (denoted by dy) in which the attacker is a network of canals.

The four prede�ned goal predicates listed above contain the following in-

formation:

• secret(E,id,S): declares the information E as a secret shared by the

agents from a set S; this secret will be identi�ed by the constant id

in the goal section;

• witness(A,B,id,E): for a (weak) authentication property of A by B on

E, declares that an agent A is witness for the information E; this goal
will be identi�ed by the constant id in the goal section;

• request(B,A,id,E): for a strong authentication property of A by B on E,
declares that an agent B requests checking the value E; this goal will
be identi�ed by the constant id in the goal section;

• wrequest(B,A,id,E): similar to request property, but in this case for

a weak authentication property.

Summing up, the language HLPSL is a very complex language which allows

the full speci�cation of cryptographic protocols. It is clear, however, that it

has been specially designed deliberately to be used by a speci�c tool, namely

the veri�cation system Avispa. That is why one can re�ect on its versatility.

It is obvious that if we would like to apply the speci�cation of the protocol

in HLPSL in another tool in the study and application, we need appropriate

special translators.

4. VerICS system and PTL language

VerICS [5, 11] is an original tool for automatic or semi-automatic veri�cation

of concurrent systems. The system allows veri�cation of various properties

of systems containing the temporal aspects. One module of VerICS is solely

devoted for the CP veri�cation. The results obtained by the VerICS team

so far are competitive to the other results obtained in Europe and worldwide

[7, 8, 9, 10, 12]. In the case of CP veri�cation, a special mathematical model

of CP executions has been developed. This model allows testing various exe-

cutions of CP. The formalism has been designed so as to be able to identify

accurately the correct sequences of steps protocol performances that make up

executions performances.

128 Paweª Dudek, Mirosªaw Kurkowski

For this project, a simple speci�cation language called ProTocol Language

(PTL) has been proposed. In this approach, the protocol is de�ned as a se-

quence of steps, and each of them is de�ned as an ordered pair of the form:

(α1, α2). The component α1 de�nes external actions of the protocol (messag-

ing), while the component α2 de�nes internal ones.

Both components contain basic and complete information about the spec-

i�ed protocol. More precisely:

α1 = (P,Q,M), α2 = (t,X,G, τ),

where P is the step initiator, Q is the owner andM is the sent message. So far,

there are no di�erences between this speci�cation and the speci�cation in the

CL language. In this approach, we have yet more information: t is a variable

indicating time when the step's execution starts, X is a set of information

needed to compose a message, G is a set of sensitive information generated

for a given step, and τ is a time constraint ensuring that each step can be

performed. This speci�cation allows precise determination of not only the

external actions of the protocol but also internal ones.

The message grammar is the same as the corresponding grammar in CL:

M : A | T | K | N | L | M,M | < M >K .

In addition, we specify time constraints according to the following gram-

mar:

τ : false | true | t− T ≤ L | τ1 ∧ τ2.
As an example of a full protocol speci�cation in the PTL language, we give

now a formal description of the Kerberos Protocol mentioned above.

Protocol speci�cation in PTL is as follows:

1. The �rst step (α1, α2), where

α1 = (A;S;A,B), α2 = (t1, {A,B}, ∅, true).

2. The second step (β1, β2), where

β1 = (S;A;< T,L,K,B >KAS
, < T,L,K,A >KBS

),

β2 = (t2, {T,L,K,A,B,KAS ,KBS}, {T,K}, t2 − T ≤ L).

3. The third step (γ1, γ2), where

γ1 = (A;B;< A,T >K , < T,L,K,A >KBS
),

γ2 = (t3, {T,K,A,< T,L,K,A >KBS
}, ∅, t3 − T ≤ L).

On some speci�cation languages of cryptographic protocols 129

4. The fourth step (δ1, δ2), where

δ1 = (B;A;< T >K), δ2 = (t4, T,K, ∅, t4 − T ≤ L).

Note that this speci�cation gives precise information on both external and

internal actions of the protocol. It also determines precisely the time condi-

tions which users need to ful�ll.

From the technical point of view, a PTL speci�cation �le contains only

information needed for further steps of veri�cation process. This �le consists

of two main parts. In the �rst one, we have basic information about numbers

of considered users and protocol steps. The second one contains speci�cation

of all protocol steps in the way mentioned before. In next lines, we have the

description of pairs specifying steps of the protocol.

5. Conclusion

E�ective methods of speci�cation and veri�cation of cryptographic protocols

are an important problem of applied cryptography. In this paper, we have

discussed a few basic languages developed for CP speci�cation. We have

presented the Common Language � the simplest language for protocol spec-

i�cation, HLPSL � the language used in the European project Avispa, and

the PTL language. Investigations in this area are still in progress. The next

steps consists in expanding the expressive power of the PTL language to de-

scribe a larger class of protocols and delays in the network occurring during

the transmission of information.

References

[1] Security Protocols Open Repository (SPORE):

http://www.lsv.ens-cachan.fr/Software/spore/

[2] R. Needham, M. Schroeder. Using encryption for authentication in large

networks of computers. Comm. ACM, 21 (12), 993�999, 1978.

[3] D. Dolev, A. Yao. On the security of public key protocols. IEEE Trans.

Information Theory, 29 (2), 198�208, 1983.

[4] G. Lowe. Breaking and �xing the Needham-Schroeder public-key pro-

tocol using FDR. In: Proc. TACAS, pp. 147-166, Springer, 1996.

[5] P. Dembi«ski, A. Janowska, P. Janowski, W. Penczek, A. Póªrola,

M. Szreter, B. Wo¹na, A. Zbrzezny. VerICS: A tool for verifying timed

automata and estelle speci�cations. In: Proc. 9th Int. Conf. TACAS'03,

vol. 2619 of LNCS, pp. 278�283, Springer, 2003.

130 Paweª Dudek, Mirosªaw Kurkowski

[6] A. Menezes, P. van Oorschot, S. Vanstone. Kryptogra�a stosowana,

WNT, 2005.

[7] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-

lar, P. Hankes Drielsma, P.C. Heam, O. Kouchnarenko, J. Mantovani,

S. Modersheim, D. von Oheimband M. Rusinowitch, J. Santiago, M. Tu-

ruani, L. Vigano, L. Vigneron. The AVISPA tool for the automated val-

idation of internet security protocols and applications. In: Proc. 17th

Int. Conf. Computer Aided Veri�cation (CAV'05), vol. 3576 of LNCS,

pp. 281�285, Springer, 2005.

[8] M. Benerecetti, N. Cuomo, A. Peron. TPMC: A model checker for

time-sensitive security protocols. In: Proc. 2007 High Performance

Computing and Simulation Conf. (HPCS 2007), pp. 742-749, Prague,

2007.

[9] M. Kurkowski, W. Penczek. Verifying security protocols modelled by

networks of automata. Fund. Informaticae, 79 (3-4), 453�471, 2007.

[10] A. Armando, L. Compagna. Sat-based model-checking for security pro-

tocols analysis. Int. J. Information Security, 7 (1), 3�32, 2008.

[11] M. Kacprzak, W. Nabiaªek, A. Niewiadomski, W. Penczek, A. Póªrola,

M. Szreter, A. Zbrzezny. Verics 2008 � a model checker for high-level

languages. Arti�cial Intelligence Studies 5 (28), 131�140, 2008.

[12] M. Kurkowski, W. Penczek. Verifying timed security protocols via trans-

lation to timed automata. Fund. Informaticae, 93 (1-3), 245�259, 2009.

