PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Azimuthal crustal variations and their implications on the seismic impulse response in the Valley of Mexico

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previous studies have suggested prominent variations in the seismic wave behavior at the 5 s period when traveling across the Valley of Mexico, associating them with the crustal structure and contributing to the anomalous seismic wave patterns observed each time an earthquake hits Mexico City. This article confirms the variations observed at 0.2 Hz by analyzing the Green tensor diagonal retrieved from empirical Green functions (EGF) calculated using seismic noise data cross-correlations of the vertical and horizontal components. We observe time and phase shifts between the east and north EGF components and show that they can be explained by the crustal structure from the surface up to 20 km depth; we also observe that the time and phase shifts are more significant if the distance between the source and the station increases. Additionally, the article presents an updated version of the velocity model from receiver functions and dispersion curves (VMRFDC v2.0) for the crustal structure under the Valley of Mexico. To validate this model, we compare the EGFs with synthetic Green functions determined numerically. To do so, we adaptatively meshed this model using an iterative algorithm to numerically simulate the impulse response up to 0.5 Hz. Finally, the comparisons between noise and synthetic EGF showed that the VMRFDC v2.0 model explains the time shifts and phase differences at 0.2 Hz, previously observed by independent studies, suggesting it correctly characterizes the crustal structure anomalies beneath the Valley of Mexico.
Czasopismo
Rocznik
Strony
53--70
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
  • Instituto de Geofisica, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
  • Comprehensive Nuclear-Test Ban Treaty Organization, Vienna, Austria
autor
  • Facultad de Ingeniena, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
  • Instituto de Geofisica, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
  • Laboratoire de Geologie, Departement de Geosciences, Ecole Normale Superieure, CNRS, UMR 8538, PSL Universite, Paris, France
Bibliografia
  • 1. Aguilar-Velazquez MJ, Perez-Campos X, Pita-Sllim O (2023) Crustal structure beneath Mexico City from joint inversion of receiver functions and dispersion curves. J Geophys Res. https://doi.org/ 10.1029/2022JB025047
  • 2. Aguilar-Velazquez MJ, Perez-Campos X, Tago J, Villafuerte C (2024). Data for “Azimuthal crustal variations and their implications on the seismic impulse response in the Valley of Mexico”. Servicio Sismológico Nacional, Instituto de Geofisica, UNAM. https://doi. org/10.21766/SSNMX.ds.VMRFDCV2p.27367
  • 3. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization, visualization handbook, Elsevier, ISBN-:13: 9780123875822
  • 4. Ammon CJ, Velasco AA, Lay T, Wallace TC (2020) Foundations of modern global seismology. Elsevier. https://doi.org/10.1016/ B978-0-12-815679-7.00002-1
  • 5. Arce JL, Layer PW, Macías JL, Morales-Casique E, García-Palomo A, Jimenez-Dominguez FJ, Benowitz J, Vasquez-Serrano A (2019) Geology and stratigraphy of the Mexico Basin (Mexico City), cen¬tral trans-Mexican volcanic belt. J Maps 15(2):320-332. https:// doi.org/10.1080/17445647.2019.1593251
  • 6. Ayachit U (2015) The paraview guide: a parallel visualization application, Kitware, ISBN 9781930934306.
  • 7. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239-1260. https://doi.org/ 10.1111/j.1365-246X.2007.03374.x
  • 8. Cardenas-Soto M, Chavez-Garaa FJ (2003) Regional path effects on seismic wave propagation in Central Mexico. Bull Seismol Soc Am 93(3):973-985. https://doi.org/10.1785/0120020083
  • 9. Castellanos JC, Clayton RW, Perez-Campos X (2018) Imaging the eastern Trans-Mexican Volcanic Belt with ambient seismic noise: evidence for a slab tear. J Geophys Res 123:7741-7759. https:// doi.org/10.1029/2018JB015783
  • 10. Chavez-Garcla FJ, Quintanar L (2010) Velocity structure under the trans-Mexican volcanic belt: preliminary results using correlation of noise. Geophys J Int 183(2):1077-1086. https://doi.org/ 10.1111/j.1365-246X.2010.04780.x
  • 11. Chen M, Huang H, Yao H, van der Hilst R, Niu F (2014) Low wave speedzones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophys Res Lett 41:334-340. https:// doi.org/10.1002/2013GL058476
  • 12. Collino F, Tsogka C (2001) Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66:294-307
  • 13. Crotwell HP, Owens TJ, Ritsema J (1999) The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70(2):154-160. https://doi.Org/10.1785/gssrl.70.2.154
  • 14. Cruz-Atienza VM, Iglesias A, Pacheco JF, Shapiro NM, Singh SK (2010) Crustal structure below the Valley of Mexico estimated from receiver functions. Bull Seismol Soc Am 100(6):3304-3311. https://doi.org/10.1785/0120100051
  • 15. Cruz-Atienza VM, Tago J, Sanabria-Gómez JD, Chaljub E, Etienne V, Virieux J, Quintanar L (2016) Long duration of ground motion in the paradigmatic Valley of Mexico. Sci Rep 6(1):38807. https:// doi.org/10.1038/srep38807
  • 16. Espmdola VH, Quintanar L, Espmdola JM (2017) Crustal structure beneath Mexico from receiver functions. Bull Seismol Soc Am 107(5):2427-2442. https://doi.org/10.1785/0120160152
  • 17. Etienne V, Chaljub E, Virieux J, Glinsky N (2010) An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modeling. Geophys J Int 183(2):941-962. https://doi.org/ 10.1111/j.1365-246X.2010.04764.x
  • 18. Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522-523:122-149. https://doi.org/ 10.1016/j.tecto.2011.09.018
  • 19. Granados-Chavarna I, Calo M, Figueroa-Soto A, Jousset P (2022) Seismic imaging of the magmatic plumbing system and geothermal reservoir of the Los Humeros caldera (Mexico) using anisotropic shear wave models. J Volcanol Geotherm Res 421:107441. https:// doi.org/10.1016/j.jvolgeores.2021.107441
  • 20. Hernandez-Aguirre VM, Paolucci R, Sanchez-Sesma FJ, Mazzieri I (2023) Three-dimensional numerical modeling of ground motion in the Valley of Mexico: A case study from the Mw3.2 earthquake of July 17, 2019. Earthq Spectra. https://doi.org/10.1177/87552930231192463
  • 21. Herrmann RB (2013) Computer programs in seismology: An evolving tool for instruction and research. Seismol Res Lett 84:1081-1088. https://doi.org/10.1785/0220110096
  • 22. Julia J, Ammon CJ, Herrmann RB, Correig AM (2000) Joint inversion of receiver functions and surface wave dispersion observations. Geophys J Int 143:99-112. https://doi.org/10.1046/j.1365-246x.2000.00217.x
  • 23. Julia J, Ammon CJ, Herrmann RB (2003) Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics 371:1-21. https:// doi.org/10.1016/S0040-1951(03)00196-3
  • 24. Krischer L, Aiman JA, Bartholomaus T, Donner S, van Driel M, Duru K, Garina K, Gessele K, Gunawan T, Hable S, Hadziioannou C, Koymans M, Leeman J, Lindner F, Ling A, Megies T, Nunn C, Rijal A, Salvermoser J, Talavera Soza S, Tape C, Taufiqurrahman T, Vargas D, Wassermann J, Wolfl F, Williams M, Wollherr S, Igel H (2018) Seismo-live: an educational online library of Jupyter notebooks for seismology. Seismol Res Lett 89(6):2413-2419. https://doi.org/10.1785/0220180167
  • 25. Kristekova M, Kristek J, Moczo P, Day SM (2006) Misfit criteria for quantitative comparison of seismograms. Bull Seismol Soc Am 96(5):1836-1850. https://doi.org/10.1785/0120060012
  • 26. Ligorna JP, Ammon CJ (1999) Iterative deconvolution and receiverfunction estimation. Bull Seismol Soc Am 89(5):1395-1400. https://doi.org/10.1785/bssa089005139
  • 27. McNamara DE, Boaz RI (2005) Seismic Noise Analysis System, Power Spectral Density Probability Density Function: Stand-Alone Soft¬ware Package. U.S.G.S, Open File Report, 2005-1438
  • 28. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4):1517-1527. https://doi.org/10.1785/012003001
  • 29. Montoya Quintanar E (2018) Evaluación de la variación temporal del nivel de ruido s^smico en las estaciones de la red de banda ancha del Servicio sismológico Nacional. TESIS-UNAM
  • 30. Ordaz M, Singh SK (1992) Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of
  • 31. amplification in the hill zone of Mexico City. Bull Seismol Soc Am 82(1):24-43. https://doi.org/10.1785/BSSA0820010024
  • 32. Peterson J (1993) Observations and Modeling of Seismic Background Noise. U.S.G.S, Open File Report, 93-322
  • 33. Pita Sllim OD (2019) Discontinuidades s^smicas corticales en la Ciudad de Mexico. Bachelor Thesis. Universidad Nacional Autónoma de Mexico, Ciudad de Mexico. Tesiunam
  • 34. Quintanar L, Cardenas-Ram^rez M, Bello-Segura DI, Esprndola VH, Perez-Santana JA, Cardenas-Monroy C, Carmona-Gallegos AL, Rodriguez-Rasilla I (2018) A seismic network for the Valley of Mexico: present status and perspectives. Seismol Res Lett 89(2A):356-362. https://doi.org/10.1785/0220170198
  • 35. Saldana-Tejeda A, Perez-Campos X, Reddy E (2022) Seismic noise to public health signal: investigating the effects of pandemic guidance in Mexico. Tapuya Lat Am Sci Technol Soc 5:1. https://doi. org/10.1080/25729861.2022.2086446
  • 36. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07614. https://doi.org/10.1029/2004GL019491
  • 37. Shapiro NM, Singh SK, Almora D, Ayala M (2001) Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico. Geophys J Int 147(3):517-527. https://doi. org/10.1046/j.0956-540x.2001.01508.x
  • 38. Si H (2015) TetGen, a Delaunay-based quality tetrahedral mesh genera¬tor. ACM Trans. Math. Softw. 41(2) Article 11:36 pages. https:// doi.org/10.1145/2629697
  • 39. Singh SK, Mena E, Castro R (1988) Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bull Seismol Soc Am 78(2):451-477. https://doi.org/ 10.1785/BSSA0780020451
  • 40. Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69:046610
  • 41. Spica Z, Perton M, Calo M, Legrand D, Córdoba-Montiel F, Iglesias A (2016) 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3). Geophys J Int 206:1795-1813. https://doi.org/10.1093/gji/ggw240
  • 42. SSN (2023). Servicio Sismológico Nacional, Instituto de Geofisica, Universidad Nacional Autónoma de Mexico, Mexico City, https:// doi.org/10.21766/SSNMX/SN/MX
  • 43. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111:B10306. https://doi.org/10.1029/2005JB004237
  • 44. Stein S, Wysession M (2003) An introduction to seismology, earthquakes and earth structure. Blackwell Publishing Ltd., Hoboken
  • 45. Tago J, Cruz-Atienza VM, Virieux J, Etienne V, Sanchez-Sesma FJ (2012) A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics. J Geophys Res 117:B09312. https:// doi.org/10.1029/2012JB009313
  • 46. Weaver RL, Lobkis OI (2001a) Ultrasonics without a source: thermal fluctuation correlation at MHz frequencies. Phys Rev. https://doi. org/10.1103/PhysRevLett.87.134301
  • 47. Weaver RL, Lobkis OI (2001b) On the emergence of the Green’s function in the correlations of a diffuse field. J Acoust Soc Am 110:3011-3017
  • 48. Weaver RL, Lobkis OI (2004) Diffuse fields in open systems and the emergence of the Green’s function. J Acoust Soc Am 116:2731-2734
  • 49. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94(45):409-410. https://doi.org/10.1002/2013EO4500 01
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82764694-7150-49c7-b135-f2d151297094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.