PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A new dynamic model for a rotating beam carrying extra partially distributed mass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new dynamic model for the vibration analysis of an inwardoriented rotating cantilever beam with extra distributed mass was presented. The derived differential equation of motion was solved using the meshless methods of generalizedMultiquadric Radial Basis Function (RBF) and the eigenfrequencies of the system were determined. The same problem was also modeled using the finite element method and the results were compared to validate the accuracy of the proposed model. Later, the effect of the partially distributed mass amount and location on the eigenfrequencies was studied for various beam lengths. The results showed that the eigenfrequency at a constant rotational speed mostly decreased unless the mass was located at the free end of the beam. The location of the mass had a greater effect on the first eigenfrequency compared to the second and third eigenfrequencies. A joint dimensionless eigenfrequency was found at a specific rotational speed regardless of the distributed mass. Nearly constant dimensionless eigenfrequencies could be obtained for a wide range of rotational speeds by adjusting the distributed mass.
Rocznik
Strony
307--321
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Mechanical Engineering Department, Istanbul Technical University, Gümüsuyu, 34437, Istanbul, Turkey
autor
  • Mechanical Engineering Department, Istanbul Technical University, Gümüsuyu, 34437, Istanbul, Turkey
Bibliografia
  • 1. M.J. Schilhansl, Bending frequency of a rotating cantilever beam, Journal of Applied Mechanics, 25, 28–30, 1958.
  • 2. A.D. Wright, C.E. Smith, R.W. Thresher, J.L.C. Wang, Vibration modes of centrifugaily stiffened beams, Journal of Applied Mechanics,Transactions ASME, 49, 197–202, 1982.
  • 3. T. Yokoyama, Free vibration characteristics of rotating Timoshenko beams, International Journal of Mechanical Sciences, 30, 743–755, 1988.
  • 4. S.V. Hoa, Vibration of a rotating beam with tip mass, Journal of Sound and Vibration, 67, 369–381, 1979.
  • 5. Y.H. Kuo, T.H. Wu, S.Y. Lee, Bending vibrations of a rotating non-uniform beam with tip mass and an elastically restrained root, Computers & Structures, 42, 229–236, 1992.
  • 6. J.S. Rao, W. Carnegie, Non-Linear Vibrations of Rotating Cantilever Beams, Aeronautical Journal, 74, 161–165, 1970.
  • 7. J.S. Rao, W. Carnegie, Non-linear vibration of rotating cantilever blades treated by the Ritz averaging process, Aeronautical Journal, 76, 566–569, 1972.
  • 8. M.N. Hamdan, B.O. Al-Bedoor, Non-linear free vibrations of a rotating flexible arm, Journal of Sound and Vibration, 242, 839–853, 2001.
  • 9. Ö. Turhan, G. Bulut, On nonlinear vibrations of a rotating beam, Journal of Sound and Vibration, 322, 314–335, 2009.
  • 10. E. Pesheck, C. Pierre, S.W. Shaw, Modal reduction of a nonlinear rotating beam through nonlinear normal modes, Journal of Vibration and Acoustics Transactions of the ASME, 124, 229–236, 2002.
  • 11. J. Chung, H.H. Yoo, Dynamic analysis of a rotating cantilever beam by using the finite element method, Journal of Sound and Vibration, 249, 147–164, 2002.
  • 12. N. Mostaghel, I. Tadjbakhsh, Buckling of rotating rods and plates, International Journal of Mechanical Sciences, 15, 429–434, 1973.
  • 13. W.D. Lakin, A. Nachman, Unstable vibrations and buckling of rotating flexible rods, Quarterly of Applied Mathematics, 35, 479–493, 1978.
  • 14. J.T.S. Wang, On the buckling of rotating rods, International Journal of Mechanical Sciences, 18, 407–411, 1976.
  • 15. W.F. White, R.G. Kvaternik, K.R.V. Kaza, Buckling of rotating beams, International Journal of Mechanical Sciences, 21, 739–745, 1979.
  • 16. D.A. Peters, D.H. Hodges, In-plane vibration and buckling of a rotating beam clamped off the axis of rotation, Journal of Applied Mechanics,Transactions ASME, 47, 398–402, 1980.
  • 17. M. Gürgöze, On the dynamical behaviour of a rotating beam, Journal of Sound and Vibration, 143, 356–363, 1990.
  • 18. P. Gross, M. Gürgöze, W. Kliem, Bifurcation and stability analysis of a rotating beam, Quarterly of Applied Mathematics, 51, 701–711, 1993.
  • 19. M. Brøns, W. Kliem, Nonlinear analysis of the buckling and vibration of a rotating elasticum, International Journal of Mechanical Sciences, 36, 673–681, 1994.
  • 20. J.B. Gunda, R.K. Gupta, R. Ganguli, Hybrid stiff-string-polynomial basis functions for vibration analysis of high speed rotating beams, Computer & Structuers, 87, 254–265, 2009.
  • 21. D. Sushma, R. Ganguli, A collocation approach for finite element basis functions for Euler-Bernoulli beams undergoing rotation and transverse bending vibration, International Journal of Computational Methods in Engineering Science and Mechanics, 13, 290–307, 2012.
  • 22. K. Sarkar, R. Ganguli, Modal tailoring and closed-form solutions for rotating non-uniform Euler-Bernoulli beams, International Journal of Mechanical Sciences, 88, 208–220, 2014.
  • 23. V. Panchore, R. Ganguli, S.N. Omkar, Meshless Local Petrov–Galerkin Method for Rotating Euler-Bernoulli Beam, Computer Modeling in Engineering and Sciences, 104, 353–373, 2015.
  • 24. V. Panchore, R. Ganguli, S.N. Omkar, Meshless local Petrov–Galerkin method for rotating Timoshenko beam: a locking-free shape function formulation, Computer Modeling in Engineering and Sciences, 108, 215–237, 2015.
  • 25. M. Berzeri, A.A. Shabana, Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation, Multibody System Dynamics, 7, 357–387, 2002.
  • 26. E.J. Kansa, Y.C. Hon, A scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & Mathematics with Applications, 19, 147–161, 1990.
  • 27. E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates, Computers & Mathematics with Applications, 19, 127–145, 1990.
  • 28. B. Fornberg, T.A. Driscoll, G. Wright, R. Charles, Observations on the behavior of radial basis function approximations near boundaries, Computers & Mathematics with Applications, 43, 473–490, 2002.
  • 29. A.I. Fedoseyev, M.J. Friedman, E.J. Kansa, Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary, Computers & Mathematics with Applications, 43, 439–455, 2002.
  • 30. E. Larsson, B. Fornberg, A numerical study of some radial basis function based solution methods for elliptic PDEs, Computers & Mathematics with Applications, 46, 891–902, 2003.
  • 31. G.E. Fasshauer, Meshfree Approximation Methods with MATLAB.World Scientific, New Jersey, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-827387c7-cb8e-4f03-a818-4b731d3f7d60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.