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In this paper, a new dynamic model for the vibration analysis of an inward-
oriented rotating cantilever beam with extra distributed mass was presented. The
derived differential equation of motion was solved using the meshless methods of
generalized Multiquadric Radial Basis Function (RBF) and the eigenfrequencies of the
system were determined. The same problem was also modeled using the finite element
method and the results were compared to validate the accuracy of the proposed
model. Later, the effect of the partially distributed mass amount and location on the
eigenfrequencies was studied for various beam lengths. The results showed that the
eigenfrequency at a constant rotational speed mostly decreased unless the mass was
located at the free end of the beam. The location of the mass had a greater effect on
the first eigenfrequency compared to the second and third eigenfrequencies. A joint
dimensionless eigenfrequency was found at a specific rotational speed regardless of the
distributed mass. Nearly constant dimensionless eigenfrequencies could be obtained
for a wide range of rotational speeds by adjusting the distributed mass.
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1. Introduction

The dynamic response of a system has a critical importance in the
design of structures attached to rotating frames. In many practical engineering
applications such as rotor blades in helicopters, centrifugal applications, wind
turbines, and satellites, the dynamic response of the system has to be determined
accurately in order to achieve a reliable operation and economically feasible
design. Due to this reason, the dynamic characteristics of rotating structures have
been reported in the literature. The bending vibration of a rotating beam was
investigated by Schilhansl [1]. The linear differential equation of motion was
derived and the natural frequencies of the beam system were obtained. Further
studies included the effect of variation on the cross-sectional shape and bending
rigidity [2], hub radius [2, 3], different external forces such as tip mass [2, 4] and
elastic foundation [5] on the dynamic behavior of rotating beams. The nonlinear
effects due to geometry and dynamics of the rotating beams were also studied.
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Another group of studies focused on the non-linear effect of Coriolis forces [6, 7],
curvature [8, 9], axial strain [10], and stretch deformation [11] on the modal
characteristics of rotating beams.

The dynamic behavior of inward-oriented rotating beams had a special atten-
tion because rotation-induced compressive stresses may cause instability due to
buckling. For these systems, the critical rotational speeds for buckling were ob-
tained by [12–14]. Numerical instabilities were observed for a small ratio of rigid
ring radius to beam length (α) [12, 13]. The limiting value of α for eliminating
in-plane buckling were also studied [15, 16]. Other efforts focused on determining
the eigenfrequencies of the inward-oriented rotating beams for a variety of α and
it was found that the characteristics of the eigenfrequencies depended on α and
rotational speed Ω [17–19].

Various numerical approaches were used to determine the modal characteris-
tics of rotating beam systems. Some of the numerical methods implemented were
Ritz method [1], integrating matrix procedure [15], finite element method [3, 11],
perturbation approach [9, 13, 17], Galerkin’s method [14, 19], and the Frobenius
method [2]. Researchers have been seeking a stable and accurate numerical algo-
rithm that can be implemented to determine the modal characteristics of rotating
beam systems. Recently, Gunda and Ganguli [20] have proposed stiff-string
basis functions used with the finite element method for faster convergence of
rotating beam problems. To improve convergence behavior in rotating beam
problems, another basis function with collocation points was developed for the
finite element method [21] where the behavior of the basis functions depends
on the rotational speed, the location of an element, and the collocation points.
Closed form solutions of a rotating beam were found using an inverse prob-
lem approach [22] in which separate polynomial shape functions were assumed
for individual modes. Panchore et al. [23, 24] implemented the meshless local
Petrov–Galerkin method to solve the weak form of the rotating beam problems.
This method eliminates the need for a mesh to construct the shape function.
However, it requires an integration step which is not a straightforward process
in meshless methods due to a lack of mesh that determines the integration do-
main. The strong form solution of the problem eliminates the need of integration.
Yet, to the authors’ knowledge, the strong form of the rotating beam problems
has not been investigated using meshless methods.

Even though the finite element method has been used extensively in modal
analysis of rotating beams, the analysis requires two-step procedure to include
the effect of the centrifugal forces on the eigenfrequencies [25]. First, a stationary
analysis is performed to determine the stationary deformation due to centrifugal
forces. Then, the results are used as a linearization point for the modal analysis.
Thus, the modal analysis depends on the successful completion of the stationary
analysis which may not be the case especially at high speeds.
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In this study, a new dynamic model to investigate the vibration character-
istics of an inward-oriented rotating beam carrying extra partially distributed
mass was proposed. The differential equation of motion characterizing the beam
system was derived using Hamilton’s principle. An efficient and accurate radial
basis function (RBF) collocation method was implemented to determine the
eigenfrequencies by solving the strong form of the differential equation. The ef-
fect of the partially distributed mass on the eigenfrequencies was studied when
the mass was located towards the free end, middle and clamped end of the
beam. The characteristics of eigenfrequencies were also analyzed for various beam
lengths.

2. Derivation of the differential equation of motion

Figure 1 shows the rotating beam system with partially distributed mass.
The system includes an elastic beam with a total length of L clamped onto
a rigid ring with a radius of R. The other end of the elastic beam is free and the
Euler–Bernoulli beam theory was used to model the elastic beam. The rigid ring
is rotating at a constant angular speed (Ω) around a perpendicular axis passing
through its center. The bending rigidity of the beam is given as EI The mass
per unit length of the beam is defined along its axis with a function µ(ξ) which
is equal to:

(2.1) µ(ξ) = µ+ {H(ξ − L1) −H(ξ − (L1 + L2))}µ2

where H is the Heaviside unit step function,µ and µ2 are the mass per unit
length of the elastic beam and partially distributed mass, respectively, ξ is the

Fig. 1. An inward-oriented elastic beam carrying partially distributed mass attached to
a rotating rigid ring.
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spatial coordinate for the partially distributed mass, L1 is the distance of par-
tially distributed mass to the clamped end of the beam and L2 is the length
of the partially distributed mass as shown in Fig. 1. It was assumed that the
partially distributed mass per unit length (µ2) shown in Fig. 1 has no bending
rigidity. This condition may be observed in rotating systems when there is soot
deposition.

From Hamilton’s principle, the governing differential equation of motion for
an inward-oriented rotating beam with proper boundary conditions can be writ-
ten as [17]:

(2.2)
EIv′′′′(x, t) + µ(ξ)v̈(x, t) − µ(ξ)Ω2v(x, t) + µ(ξ)Ω2{Fa(x)v

′(x, t)}′ = 0,

v(0, t) = v′(0, t) = v′′(L, t) = v′′′(L, t) = 0

where v(xt) is the beam deflection and the axial force acting on the beam due
to the centrifugal force Fa(x) is defined as:

(2.3) Fa(x) =

L∫

x

µ(ξ)Ω2(R−ξ) dξ.

To determine the axial force Fa(x) acting on the beam sectionx because of
the centrifugal force, the beam was considered having three separate regions as
shown in Fig. 1. Fa(x) for each section was calculated by integrating Eq. (2.3).
The results of these integrations are given in Eq. (2.4)

Fa1(x) = µΩ2

{[

R(L−x)−1

2
(L2−x2)

]

+
µ2

µ

[

RL2−L1L2−
L2

2

2

]}

, 0 ≤ x ≤ L1,

Fa2(x) = µΩ2

{[

R(L−x)−1

2
(L2−x2)

]

(2.4)

+
µ2

µ

[

R(L1+L2−x)−
1

2

[

(L1+L2)
2−x2

]]}

, L1 ≤ x ≤ L1+L2,

Fa3(x) = µΩ2

[

R(L−x)−1

2
(L2−x2)

]

, L1+L2 ≤ x ≤ L.

Assuming the solution follows a harmonic behavior in the form of

v(x, t) = y(x) cos(ωit),

partial differential equation given in Eq. (2.2) leads to the dimensionless form
of the following ordinary differential equation systems and the corresponding
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boundary conditions:

y1
′′′′(x̄) + Ω̄2[αµb̄1 − f(x̄, α)]y

′′

1 (x̄)

− Ω̄2f ′(x̄, α)y′1(x̄) − Ω̄2y1(x̄) = λiy1, 0 ≤ x̄ ≤ α1,

y2
′′′′(x̄) + Ω̄2[αµb̄2(x̄) − f(x̄, α)]y2

′′(x̄) + Ω̄2[αµb̄2
′
(x̄)−f ′(x̄, α)]y′2(x̄)

− (1 + αµ)Ω̄2y2(x̄) = (1 + αµ)λiy2, α1 ≤ x̄ ≤ α2,

y3
′′′′(x̄) − Ω̄2f(x̄, α)y

′′

3 (x̄) − Ω̄2f ′(x̄, α)y′3(x̄) − Ω̄2y3(x̄) = λiy3, α2 ≤ x̄ ≤ 1,

y1(0) = 0, y1(α1) = y2(α1), y2(α2) = y3(α2), y′′3(1) = 0,(2.5)

y′1(0) = 0, y′1(α1) = y′2(α1), y′2(α2) = y′3(α2), y′′′3 (1) = 0,

y′′1(α1) = y′′2(α1), y′′2(α2) = y′′3(α2),

y′′′1 (α1) = y′′′2 (α1), y′′′2 (α2) = y′′′3 (α2),

where dimensionless parameters are defined as:

(2.6)

x̄ =
x

L
, ω2

0 =
EI

µL4
, Ω̄ =

Ω

ω0
, λi =

ω2
i

ω2
0

,

αµ =
µ2

µ
, α1 =

L1

L
, α2 =

L1 + L2

L
, α =

R

L
,

f(x̄, α) = (1 − x̄)

[
1

2
(1 + x̄) − α

]

,

b̄2(x̄) = α(α2 − x̄) − 1

2
(α2

2 − x̄2),

b1 =
RL2

L2
− L1L2

L2
− L2

2

2L2
,

ωi are the eigenfrequencies of the rotating beam on the rigid ring plane. The
equations given in Eq. (2.5) that formulate the beam system shown in Fig. 1
were used to complete the modal analysis. If interested in the outward-oriented
rotating beam system, the solution can be obtained by selecting α < 0. In the
derivation of equations given in Eq. (2.5), it was also assumed that the partially
distributed mass has no bending rigidity. When partially distributed mass has
a constant bending rigidity, this can be accounted for by introducing a coefficient
in Eq. (2.5) at the interval α1 ≤ x̄ ≤ α2.

3. Numerical method

The eigenfrequencies of the rotating beam system described in Eq. (2.5) were
determined using the radial basis function (RBF) collocation method. The RBF
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collocation method is a meshless method that eliminates the need for mesh gen-
eration. Kansa [26, 27] implemented the RBF collocation method using mul-
tiquadric (MQ) RBFs to solve partial differential equations. Generalized MQ
family of RBFs can be defined as in Eq. (3.1):

(3.1) φ(x) = (1 + (εr)2)
β
, ε > 0, β ∈ R \ N0

where r = xi − xj is the distance between the current domain point xi and the
center points xj , ε is the shape parameter and β is the parameter that defines the
type of the RBF. For β < 0 the functions are defined as the inverse multiquadric
(IMQ) RBFs and for β > 0, MQ RBFs are obtained. Parameters ε and β affect
the numerical stability and the solution of the partial differential equation. Points
xi may be located in the domain or at the boundaries, whereas the location of
the center points xj may also be outside of the domain. The approximation of
the unknown function y(x) at point xi can be defined as the linear combination
of RBFs which is written as:

(3.2) y(xi) =

Nc∑

j=1

cjφj(xi), y′(xi) =

Nc∑

j=1

cjφ
′
j(xi)

where Nc is the total number of center nodes and cj are the constants to be
determined. The derivatives of the unknown function given in Eq. (3.2) can be
written as linear combinations of the RBF derivatives because cj are constants.
Substituting Eq. (3.2) into the differential equations and boundary conditions
given in Eq. (2.5), the following collocation approximation is obtained:

(3.3)

[
L[y(x)]
B[y(x)]

]

︸ ︷︷ ︸

[A]

{c} = {0}

where L and B are the differential and boundary operators that define the dif-
ferential equation and the boundary conditions given in Eq. (2.5), respectively.
Equation (2.5) is reorganized to make the righthand side of the equation zero and
the matrix form given in Eq. (3.3) was obtained. If the problem is well-posed,
Eq. (3.3) has a unique solution and the coefficient vector {c} can be determined.
Equation (3.2) is then used to calculate the unknown variable field of y and
its derivatives. However, our interest was to determine the eigenvalues λi that
makes the determinant of matrix [A] zero for non-trivial solutions. The critical
rotational speeds for buckling were obtained if λ = 0. Eigenvalues are related
to the eigenfrequencies (natural frequencies) of the system through the equation
given in Eq. (2.6). The eigenmodes of the system can then be obtained using
Eqs. (3.2) and (3.3) if needed.
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Since the determinant is defined only for square matrices, [A] has to be
in the form of a square matrix for this problem. This requirement generates
a limitation between the number of center nodes (Nc) and domain/boundary
nodes. The number of domain nodes (Nd) and boundary conditions determine
the row size whereas the number of center nodes determines the column size.
For a total number of domain and boundary nodes of Nd and Nb, respectively,
the total number of center nodes should be selected as Nd + Nb to guarantee
a square matrix. The total number of boundary nodes is Nb = 4 for the prob-
lem defined by Eq. (2.5) because two boundary conditions are imposed at each
boundary.

It is known that the error on the boundaries tends to be larger than anywhere
else in the domain in the RBF collocation method [28]. Due to this reason,
Fedoseyev et al. [29] developed a method to impose not only the boundary
conditions but also the partial differential equation at the boundary locations
to reduce the error at the boundaries. This approach was followed in this study.
The question of how the center nodes should be located is still an active area
of research. Center nodes can be inside and/or outside of the domain or at the
boundaries. In this study, center nodes for each boundary node were selected
to be outside of the domain because it was found that selecting center nodes
outside the domain generally give a smaller error values at the boundaries [30].
The distribution of domain, boundary and center nodes are given in Fig. 2.
Center and domain nodes were uniformly distributed along the beam axis.

Fig. 2. The distribution of domain, boundary, and center nodes along the axis of the beam.

3.1. Determining the parameters of ε and β

Important parameters affecting the stability and the accuracy of the solu-
tion are the shape parameter ε, MQ parameter β, and the number of domain
nodes Nd. As Nd increases, the relative error has a tendency to decrease. How-
ever, further increase in the number of domain points results in ill-conditioning
of [A]. A mathematical representation of the error norm bound as a function of
parameters ε and β has not been established yet for modal analysis problems.
For this reason, a sensitivity analysis of ε, β and Nd was performed for the
inward-oriented uniform cantilever beam with no extra added mass which has
an available numerical solution [17]. In the sensitivity analysis, the variation of
ε and β in the range of 0.1 ≤ ε ≤ 3 and −10 ≤ β ≤ 10 was investigated and
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the results were compared with the numerical results given in [17]. The results
were obtained using the proposed meshless numerical scheme for three different
rotational speeds with α = 0.5. The absolute relative error was less than 1%
in the range of 0.5 ≤ ε ≤ 2 and 1 < β < 5. In this range of ε and β, Nd was
increased and the analysis was repeated. Once Nd ≥ 10, numerical instabilities
were observed in the solutions due to ill-conditioning. Due to this reason Nd

was set to 9 and a combination of ε and β that minimized the absolute relative
error was investigated in the range of 0.5 ≤ ε ≤ 2 and 1 < β < 5. A suitable
combination was found as ε = 0.75 and β = 1.35 The comparison of the numer-
ical results obtained from [17] and the proposed method is shown in Table 1.
Good agreement between the results were observed especially at relatively small
rotational speeds. As the rotational speed increased, the relative error on the
eigenfrequencies tended to increase with a maximum of 0.8%. If needed, more
accurate results at high rotational speeds could be obtained by increasing the
number of domain nodes with local support [31]. The error levels less than 1%
were considered as sufficient and the values of Nd = 9, ε = 0.75, and β = 1.35
were also used for the problem with extra partially distributed mass.

Table 1. First three dimensionless eigenfrequencies of the inward-oriented
uniform cantilever beam attached to a rotating rigid ring with ε = 0.75, β = 1.35,

and Nd = 9.

Ω̄ 1.7580 11.0173 30.8486√
λ1 3.2446 NA NA

√
λ

[17]

1 3.2454 NA NA

Abs. relative error (%) 0.02 NA NA√
λ2 22.1128 25.0435 39.4913

√
λ

[17]

2 22.1153 25.0134 39.8036

Abs. relative error (%) 0.01 0.12 0.78√
λ3 61.7890 65.8577 89.0403

√
λ

[17]

3 61.8069 65.8681 89.3193

Abs. relative error (%) 0.03 0.02 0.31

4. Numerical results for an inward-oriented uniform cantilever beam

carrying partially distributed mass attached to a rotating rigid ring

The problem defined in Section 2 (Eq. (2.4) and (2.5)) was solved using
the numerical method explained in Section 3 to obtain the dimensionless eigen-
frequencies. The location and the amount of partially distributed mass on the
rotating beam were investigated. The numerical simulations were performed for
dimensionless distributed mass parameter of αµ = 0.5, 1.0, and 1.5 and the
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list of the locations L1, L2, and L3 is given in Table 2. The partially dis-
tributed mass having a relative length of 0.5 was located towards the beginning
(clamped end), middle, and free end of the beam. These cases are referred to as
cases C, M, and F , respectively. The first three dimensionless eigenfrequencies
ω̄i =

√
λi/λnon

i (i = 1, 2, 3) of the beam were calculated as a function of dimen-
sionless rotational speed ηi where λnon

i is the ith dimensionless eigenfrequency of
the non-rotating beam.

Table 2. The tested positions of the partially distributed mass.

L1/L L2/L L3/L

Case C 0.0 0.5 0.5

Case M 0.25 0.5 0.25

Case F 0.5 0.5 0.0

The validation of the dynamic model and the numerical method was per-
formed by comparing the results with the finite element solution. The finite
element model was created using COMSOL 5.4 software. The modulus of elas-
ticity and density was set to 210 GPa and 7850 kg/m3, respectively. A mesh
sensitivity analysis was performed and 100 beam elements were used to model
a 100 mm long beam. The case F with α = 0.5 was selected for the comparison
study. The dimensionless eigenfrequency with respect to dimensionless rotational
speed obtained from FEM and the proposed model is shown in Fig. 3. Excellent
agreement between the results was obtained. However, the eigenfrequencies at
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Fig. 3. Comparison of dimensionless eigenfrequency and rotational speed of the
inward-oriented uniform cantilever beam attached to a rotating rigid ring (α = 0.5, Case F ).
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some rotational speeds, especially relatively high speeds, could not be obtained
using the FEM model due to the lack of a convergent stationary analysis.

Once the comparison study was completed, the proposed model was used to
investigate the effect of the location and amount of the distributed mass on the
eigenfrequency behavior. The numerical analysis was first performed for α = 0.5
and the results are shown in Fig. 4. The analytical results of [17] are also shown as
αµ = 0 for comparison. It can be observed in Fig. 4 that the first three eigenfre-
quencies of the rotating beam system at a constant rotational speed decreased
with increasing partially distributed mass for cases C and M . This behavior
was also observed with the first eigenfrequency of Case F . However, the sec-
ond and third eigenfrequencies of Case F had different characteristics and as
the rotational speed increased, the increase on the eigenfrequencies was higher
with increasing partially distributed mass. Thus, at a certain rotational speed,
the eigenfrequencies were the same regardless of the amount of partially dis-
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Fig. 4. The variation of the dimensionless eigenfrequency with respect to rotational speed
(α = 0.5) when αµ = 0.5, 1.0, and 1.5 is located towards the a) clamped end of the beam

(Case C), b) middle of the beam (Case M), and c) free end of the beam (Case F ).
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tributed mass as shown in Fig. 4(c). Once the rotational speed increased beyond
this speed, contrary to the other cases, increasing the partially distributed mass
resulted in an increase in the eigenfrequencies.

The results for Case C also indicated that the behavior of the eigenfrequency
curves was not always monotonic and the amount of the partially distributed
mass affected the eigenfrequency behavior. The curve showed an increase fol-
lowed by a decrease for αµ = 1.5 for the third eigenfrequency. A similar behavior
was also observed for the second eigenfrequency as the dimensionless distributed
mass parameter increased beyond 1.8 (αµ > 1.8) which was not shown in Fig. 4.
However, the descent in the curve was not as steep as observed for the third eigen-
frequency. Thus, the effect of rotational speed on the second eigenfrequency can
be minimized. For instance, the second dimensionless eigenfrequency for αµ = 1.8
was between 0.70 and 0.75 within the investigated dimensionless rotational speed
range.
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A similar analysis was also performed for α = 1.0 and α = 1.5 and the
results are shown in Figs. 5 and 6, respectively. The first eigenfrequency behav-
ior was similar for α = 0.5, 1.0 and 1.5 as the dimensionless distributed mass
parameter αµ was increased and the location of the partially distributed mass
was changed. However, the second and third eigenfrequencies showed different
characteristics compared to α = 0.5 and they decreased with increasing rota-
tional speed. Only a slight difference on the second and third eigenfrequencies
was observed for a particular αµ when the location of the partially distributed
mass changed. Other observations included the eigenfrequencies at a particular
rotational speed decreased with increasing α for all configurations and placing
the partially distributed mass at the free end of the beam resulted in a higher
decrease on the eigenfrequencies compared to the other locations.

The effect of the partially distributed mass location on the first eigenfre-
quency was more evident compared to second and third eigenfrequencies. Once
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Fig. 6. The variation of the dimensionless eigenfrequency with respect to rotational speed
(α = 1.5) when αµ = 0.5, 1.0, and 1.5 is located towards the a) clamped end of the beam

(Case C), b) middle of the beam (Case M), and c) free end of the beam (Case F ).
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the mass moved towards the free end of the rotating beam, the eigenfrequencies
had a tendency to decrease, particularly the first eigenfrequency. The amount
of partially distributed mass had an inverse effect on the eigenfrequencies. This
effect was more apparent in the second and third eigenfrequencies at zero and
relatively slow rotational speeds.

The rotational speed at which the eigenfrequencies are zero determines the
buckling mode. As shown in Figs. 4–6, only one buckling mode existed for α = 0.5
whereas there were three distinguished buckling modes for α = 1.0 and α = 1.5.
An increase in the partially distributed mass decreased the rotational speed at
which the buckling would occur. This decrease in the critical rotational speed
became smaller with increasing α. The critical rotational speed for buckling was
also decreased as the location of the partially distributed mass moved towards
the free end of the beam.

5. Conclusions

The differential equation of motion governing the behavior of an inward-
oriented uniform cantilever beam carrying an extra partially distributed mass
attached to a rotating rigid ring was derived. The Multiquadric (MQ) Radial
Basis Functions (RBF) method was used to determine the eigenfrequencies of
the beam system. It was observed from the results that as the amount of par-
tially distributed mass increased, the dimensionless eigenfrequency at a constant
rotational speed mostly decreased. This behavior could be altered when the par-
tially distributed mass was located towards the free end of the beam for α = 0.5.
This suggested that a shared dimensionless eigenfrequency existed at a specific
rotational speed regardless of the amount of the mass. The monotonic behavior
of the eigenfrequency curve also changed when the partially distributed mass
was located towards the middle and free end of the beam. This transition was
smoother for the second eigenfrequency. Thus, a dimensionless distributed mass
parameter αµ that resulted in essentially constant dimensionless eigenfrequency
may be obtained for a wide range of rotational speeds. The location of the par-
tially distributed mass affected the first eigenfrequency more than the second
and third eigenfrequencies for α = 1.0 and 1.5. One and three rotational speeds
for buckling were observed for α = 0.5 and α = 1.0, 1.5, respectively. An increase
in the partially distributed mass decreased the critical rotational speed for buck-
ling. The formulation derived in this study is a first step for further analysis in
higher dimensions and the results are expected to improve the practical appli-
cations of rotating systems. The proposed numerical model can also be used for
other rotating beam problems for which the differential equation of motion is
available.
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