Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Nowa metoda współdzielenia prądu w celu ograniczenia prądu obiegowego w mikrosieci siatkowej
Języki publikacji
Abstrakty
In AC microgrids, droop control is widely employed for active and reactive power sharing due to its decentralized nature. However, when dealing with microgrids where the impedance of feeder lines is mismatched, droop control’s objectives may not be effectively achieved. Specifically, accurate sharing of reactive power is compromised, thereby impacting the overall microgrid performance. In response to these challenges, numerous researchers have explored alternative techniques to achieve precise current or power sharing, taking into account impedance disparities among feeder lines. Despite meeting these objectives, the presence of considerable circulating current within the microgrid remains, which could potentially threaten the system stability. To address these issues, this paper introduces a novel current sharing method designed for meshed microgrids. This method is designed not only to ensure accurate current sharing among distributed generations but also to mitigate circulating current to very low values. The effectiveness of the proposed approach is rigorously evaluated through software simulations employing MATLAB/SIMULINK. A comparison of circulating current values is conducted between two methods from the literature and the presented approach in this paper. The results demonstrate the effectiveness of the proposed method in achieving current sharing and reducing circulating current to minimal levels in challenging conditions.
W mikrosieciach prądu przemiennego powszechnie stosuje się regulację nachyleniową w celu podziału mocy czynnej i biernej ze względu na jej zdecentralizowany charakter. Jednakże, przy mikrosieciach, gdzie impedancje linii zasilających są niezrównoważone, cele regulacji nachyleniowej mogą nie być skutecznie osiągnięte. W szczególności dokładny podział mocy biernej może być utrudniony, co wpływa negatywnie na ogólną wydajność mikrosieci. W odpowiedzi na te wyzwania, liczni badacze eksplorują alternatywne techniki osiągania precyzyjnego podziału prądu lub mocy, uwzględniając nierówności impedancji między liniami zasilającymi. Pomimo spełnienia tych celów, w mikrosieci pozostaje znaczny prąd krążący, który potencjalnie może zagrażać stabilności systemu. W celu rozwiązania tych problemów, niniejsza praca przedstawia nową metodę podziału prądu zaprojektowaną dla splecionych mikrosieci. Ta metoda ma na celu nie tylko zapewnienie dokładnego podziału prądu między rozproszonymi źródłami generacji, ale także zminimalizowanie prądu krążącego do bardzo niskich wartości. Skuteczność zaproponowanego podejścia jest rygorystycznie oceniana za pomocą symulacji komputerowych przy użyciu programu MATLAB/SIMULINK. Porównanie wartości prądu krążącego jest przeprowadzone między dwiema metodami z literatury a przedstawionym podejściem w tej pracy. Wyniki demonstrują skuteczność zaproponowanej metody w osiąganiu podziału prądu i redukcji prądu krążącego do minimalnych poziomów w trudnych warunkach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
220--227
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
- Laboratory of Energy and Electrical Systems, Ecole Nationale Supérieure d’Electricité et de Mécanique (ENSEM), Hassan II University of Casablanca, Casablanca, Morocco
autor
- Laboratory for Energy and Theoretical and Applied Mechanics LEMTA, Université de Lorraine, Nancy, France
autor
- Laboratory of Energy and Electrical Systems, Ecole Nationale Supérieure d’Electricité et de Mécanique (ENSEM), Hassan II University of Casablanca, Casablanca, Morocco
Bibliografia
- [1] B. Martin, S. Bjarne, D. Mathias, S. Tobias, “Comparing CO2 emissions impacts of electricity storage across applications and energy systems”. Joule. 5. 1501–1520, 2021.
- [2] A. Papageorgiou, A. Ashok, T. Hashemi Farzad, C. Sundberg, “Climate change impact of integrating a solar microgrid system into the Swedish electricity grid [J]”. Applied Energy, 2020, 268.
- [3] Y. Hennane, A. Berdai, J.-P. Martin, S. Pierfederici, F. Meibody Tabar, “New Decentralized Control of Mesh AC Microgrids: Study, Stability, and Robustness Analysis”. Sustainability 2021, 13, 2243.
- [4] S. Augustine, M. K. Mishra and N. Lakshminarasamma, "Circulating current minimization and current sharing control of parallel boost converters based on Droop Index," 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, 2013, pp. 454-460, doi: 10.1109/DEMPED.2013.6645755.
- [5] Y. Hennane, Y. A. Ait Ben Hassi, A. Berdai and V. Tytiuk, "Primary, Secondary and Tertiary Controls of a Mesh Multi-PCC Microgrid," 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 1-5, doi: 10.1109/MEES58014.2022.10005647.
- [6] H. Xiao, A. Luo, Z. Shuai, G. Jin and Y. Huang, "An Improved Control Method for Multiple Bidirectional Power Converters in Hybrid AC/DC Microgrid," in IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 340-347, Jan. 2016, doi: 10.1109/TSG.2015.2469758.
- [7] Baojin Liu, Zeng Liu, Jinjun Liu, Teng Wu and Ronghui An, "A novel unbalanced power sharing control method for an islanded microgrid," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, Taiwan, 2017, pp. 1617-1622, doi: 10.1109/IFEEC.2017.7992289.
- [8] S. Y. Altahir, Xiangwu Yan and Xinxin Liu, "A power sharing method for inverters in microgrid based on the virtual power and virtual impedance control," 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, 2017, pp. 151-156, doi: 10.1109/CPE.2017.7915161.
- [9] Y. Hennane, S. Pierfederici, A. Berdai, F. Meibody-Tabar and J. -P. Martin, "Distributed Control of Islanded Meshed Microgrids," in IEEE Access, vol. 11, pp. 78262-78272, 2023, doi: 10.1109/ACCESS.2023.3298525. S. J. Chiang, C. Y. Yen and K. T. Chang, "A multimodule parallelable series-connected PWM voltage regulator," in IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 506-516, June 2001, doi: 10.1109/41.925577.
- [10] S. J. Chiang, C. Y. Yen and K. T. Chang, "A multimodule parallelable series-connected PWM voltage regulator," in IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 506 516, June 2001, doi: 10.1109/41.925577.
- [11] Yang Mi, Jiahang Guo, Si Yu, Pengcheng Cai, Liang Ji, Yufei Wang, Dong Yue, Yang Fu, Chi Jin,A Power Sharing Strategy for Islanded DC Microgrid with Unmatched Line Impedance and Local Load, Electric Power Systems Research, Volume 192, 2021,
- [12] M. Gao, M. Chen, C. Wang and Z. Qian, "An Accurate Power Sharing Control Method Based on Circulating-Current Power Phasor Model in Voltage-Source Inverter Parallel-Operation System," in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4458-4476, May 2018, doi: 10.1109/TPEL.2017.2720479.
- [13] B. Sharma et al., "Power Sharing in Three-Level NPC Inverter Based Three-Phase Four-Wire Islanding Microgrids With Unbalanced Loads," in IEEE Access, vol. 11, pp. 20725-20740, 2023, doi: 10.1109/ACCESS.2023.3250219.
- [14] Shirazul Islam, Atif Iqbal, Souradip De, Farhad Ilahi Bakhsh, Distributed secondary controller to ensure proportional sharing of reactive power in AC microgrid, Energy Reports, Volume 8, 2022, Pages 6779-6793,
- [15] Amirparast, A., Hosseini Sani, S. K.: A robust optimal distributed control design for simultaneous voltage regulation and current sharing in DC microgrid. IET Smart Grid. 1 13 (2023). https://doi.org/10.1049/stg2.12130
- [16] Sun Jinkun, Liu Qingfeng, Leng Zhaoxia and Wang Huamin, "A current sharing control strategy of paralleled DC-DC converter based on simple model," 2010 International Conference on Optics, Photonics and Energy Engineering (OPEE), Wuhan, 2010, pp. 288-291, doi: 10.1109/OPEE.2010.5508130.
- [17] R. Dadi, K. Meenakshy and S. K. Damodaran, "A Modified Droop Control Method for DC Microgrid with Improved Voltage Regulation and Current Sharing," 2020 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 2020, pp. 1-6, doi: 10.1109/PICC51425.2020.9362371.
- [18] Y. Jiang, Y. Yang, S. -C. Tan and S. -Y. R. Hui, "Adaptive Current Sharing of Distributed Battery Systems in DC Microgrids Using Adaptive Virtual Resistance-Based Droop Control," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 4262-4267, doi: 10.1109/ECCE.2019.8912180.
- [19] T. -F. Wu, Y. -E. Wu, H. -M. Hsieh and Y. -K. Chen, "Current Weighting Distribution Control Strategy for Multi-Inverter Systems to Achieve Current Sharing," in IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 160-168, Jan. 2007, doi: 10.1109/TPEL.2006.886622.
- [20] P. K. Gorijeevaram Reddy, S. Dasarathan, and V. Krishnasamy, “Investigation of Adaptive Droop Control Applied to Low-Voltage DC Microgrid,” Energies, vol. 14, no. 17, p. 5356, Aug. 2021, doi: 10.3390/en14175356.
- [21] N. Ghanbari and S. Bhattacharya, "Adaptive Droop Control Method for Suppressing Circulating Currents in DC Microgrids," in IEEE Open Access Journal of Power and Energy, vol. 7, pp. 100-110, 2020, doi: 10.1109/OAJPE.2020.2974940.
- [22] M. Rashad, U. Raoof, N. Siddique, and D. M. Minhas, “Mitigation of Circulating Currents for Parallel Connected Sources in a Standalone DC Microgrid,” in The 1st International Conference on Energy, Power and Environment, in ICEPE 2021. MDPI, Dec. 2021. doi: 10.3390/engproc2021012031.
- [23] Ravi Kumar Gupta, Vishnu Mohan Mishra, N.K. Singh, Elimination of circulating current in parallel operation of single phase inverter using droop controller, Engineering Science and Technology, an International Journal, Volume 28, 2022,
- [24] M. D. Pham and H. H. Lee, "Adaptive Virtual Impedance Control Method for Accurate Reactive Power Sharing and Circulating Current Suppression in Islanded Microgrid," 2019 IEEE Student Conference on Electric Machines and Systems (SCEMS 2019), Busan, Korea (South), 2019, pp. 1-5, doi: 10.1109/SCEMS201947376.2019.8972636.
- [25] Y. A. Ait Ben Hassi, Y. Hennane, A. Berdai and V. Tytiuk, "A Robust Reactive Power Sharing Solution For Meshed Multi PCC Microgrids," 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 2023, pp. 1-4, doi: 10.1109/EMES58375.2023.10171691.
- [26] Y. A. Ait Ben Hassi, Y. Hennane, A. Berdai and V. Tytiuk, "Primary and Secondary Controls with Reactive Power Sharing in Mesh Microgrids," 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 1-6, doi: 10.1109/MEES58014.2022.10005740.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82700579-c019-4bbc-a3f6-d100ac2dad20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.