PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automation of earth moving machineries is a widely studied problem. This paper focusses on one of the main challenges in automation of the earth moving industry, estimation of loading torque acting on the machinery. Loading torque acting on the excavation machinery is a very significant aspect in terms of both machine and operator safety. In this study, a disturbance observer-assisted control system for the estimation of loading torque acting on a robotic backhoe during excavation process is presented. The proposed observer does not use any acceleration measurements, rather, is proposed as a function of joint velocity. Numerical simulations are performed to demonstrate the effectiveness of the proposed control scheme in tracking the reaction torques for a given dig cycle. Co-simulation experiments demonstrate robust performance and accurate tracking of the proposed control in both disturbance torque and position tracking. Further, the performance and sensitivity of the proposed control are also analyzed through the help of performance error quantifiers, the root-mean-square (RMS) values of the position and disturbance tracking errors.
Rocznik
Strony
153--169
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun (UK), India
  • Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun (UK), India
  • Discipline of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad (Kerala),India
Bibliografia
  • [1] R.C. Winck, M. Elton, and W.J. Book. A practical interface for coordinated position control of an excavator arm. Automation in Construction, 51:46–58, 2015. doi: 10.1016/j.autcon.2014.12.012.
  • [2] D. Wang, L. Zheng, H. Yu, W. Zhou, and L. Shao. Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation. Automation in Construction, 64:1-6, 2016. doi: 10.1016/j.autcon.2015.12.024.
  • [3] H. Feng, C. Yin, W. Weng, W. Ma, J. Zhou, W. Jia, and Z. Zhang. Robotic excavator trajectory control using an improved GA based PID controller. Mechanical Systems and Signal Processing, 105:153–168, 2018. doi: 10.1016/j.ymssp.2017.12.014.
  • [4] P. Saeedi, P.D. Lawrence, D.G. Lowe, P. Jacobsen, D. Kusalovic, K. Ardron, and P.H. Sorensen. An autonomous excavator with vision-based track-slippage control. IEEE Transactions on Control Systems Technology, 13(1):67–84, 2005. doi: 10.1109/TCST.2004.838551.
  • [5] D. Kim, J. Kim, K. Lee, C. Park, J. Song, and D. Kang. Excavator tele-operation system using a human arm. Automation in Construction, 18(2):173–182, 2009. doi: 10.1016/j.autcon.2008.07.002.
  • [6] J. Yoon and A. Manurung. Development of an intuitive user interface for a hydraulic backhoe. Automation in Construction, 19(6):779–790, 2010. doi: 10.1016/j.autcon.2010.04.002.
  • [7] S. Dadhich, U. Bodin, and U. Andersson. Key challenges in automation of earth-moving machines. Automation in Construction, 68:212–222, 2016. doi: 10.1016/j.autcon.2016.05.009.
  • [8] Y. Liu, M.S. Hasan, and H.-N. Yu. Modelling and remote control of an excavator. International Journal of Automation and Computing, 7(3):349–358, 2010. doi: 10.1007/s11633-010-0514-8.
  • [9] S. Kim, J. Park, S. Kang, P.Y. Kim, and H.J. Kim. A robust control approach for hydraulic excavators using µ-synthesis. International Journal of Control, Automation and Systems, 16(4):1615–1628, 2018. doi: 10.1007/s12555-017-0071-9.
  • [10] Q.H. Nguyen, Q.P. Ha, D.C. Rye, and H.F. Durrant-Whyte. Force/position tracking for electrohydraulic systems of a robotic excavator. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5, pages 5224–5229, Sydney, Australia, 12-15 Dec. 2000. doi: 10.1109/CDC.2001.914787.
  • [11] Q. P. Ha, Q.H. Nguyen, D.C. Rye, and H.F. Durrant-Whyte. Impedance control of a hydraulically actuated robotic excavator. Automation in Construction, 9(5-6):421–435, 2000. doi: 10.1016/S0926-5805(00)00056-X.
  • [12] Q. Ha, M. Santos, Q. Nguyen, D. Rye, and H. Durrant-Whyte. Robotic excavation in construction automation. IEEE Robotics & Automation Magazine, 9(1):20–28, 2002. doi: 10.1109/100.993151.
  • [13] S.E. Salcudean, S. Tafazoli, P.D. Lawrence, and I. Chau. Impedance control of a teleoperated mini excavator. In 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR’97, pages 19–25, Monterey, USA, 7-9 July 1997. doi: 10.1109/ICAR.1997.620156.
  • [14] S. Tafazoli, S.E. Salcudean, K. Hashtrudi-Zaad, and P.D. Lawrence. Impedance control of a teleoperated excavator. IEEE Transactions on Control System Technology, 10(3):355–367, 2002. doi: 10.1109/87.998021.
  • [15] M.D. Elton and W.J. Book. Comparison of human-machine interfaces designed for novices teleoperating multi-DOF hydraulic manipulators. In 2011 RO-MAN Symposium, pages 395–400, Atlanta, USA, 31 July–3 Aug. 2011. doi: 10.1109/ROMAN.2011.6005250.
  • [16] M.E. Kontz. Haptic Control of Hydraulic Machinery Using Proportional Valves. Ph.D Thesis, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA, 2007.
  • [17] B. Frank, L. Skogh, R. Filla, A. Fröberg, and M. Alaküla. On increasing fuel effciency by operator assistant systems in a wheel loader. In Proceedings of International Conference on Advanced Vehicle Technologies and Integration, pages 155–161, Changchun, China, 2012. doi: 10.13140/RG.2.1.3129.1362.
  • [18] H. Cannon and S. Singh. Models for automated earthmoving. In Experimental Robotics VI, pages 163–172, Springer, London 2000. doi: 10.1007/BFb0119395.
  • [19] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 1989.
  • [20] M. Bodur, H. Zontul, A. Ersak, A.J. Koivo, H.O. Yurtseven, E. Kocaoglan, and G. Pasamehmetoglu. Dynamic cognitive force control for an automatic land excavation robot. In Proceedings of MELECON’94. Mediterranean Electrotechnical Conference, pages 703–706, Antalya, Turkey, 12-14 April 1994. doi: 10.1109/MELCON.1994.380908.
  • [21] A.J. Koivo, M. Thoma, E. Kocaoglan, and J. Andrade-Cetto. Modeling and control of excavator dynamics during digging operation. Journal of Aerospace Engineering, 9(1):10–18, 1996. doi: 10.1061/(ASCE)0893-1321(1996)9:1(10).
  • [22] S. Li, J. Yang, W.H. Chen, and X. Chen. Disturbance Observer Based Control: Methods and Applications, CRC Press, 2014.
  • [23] S. Mohan and J. K. Mohanta. Dual integral sliding mode control loop for mechanical error correction in trajectory-tracking of a planar 3-PRP parallel manipulator. Journal of Intelligent & Robotic Systems, 89(3-4):371–385, 2018. doi: 10.1007/s10846-017-0553-2.
  • [24] S. Mohan. Error analysis and control scheme for the error correction in trajectory tracking of a planar 2PRP-PPR parallel manipulator. Mechatronics, 46:70–83, 2017. doi: 10.1016/j.mechatronics.2017.07.003.
  • [25] G.J. Maeda, I.R. Manchester, and D.C. Rye. Combined ILC and disturbance observer for the rejection of near-repetitive disturbances, with application to excavation.IEEE Transactions on Control Systems Technology, 23(5):1754–1769, 2015. doi:10.1109/TCST.2014.2382579.
  • [26] W.H. Chen, D.J. Ballance, P.J. Gawthrop, and J. O’Reilly. An onlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47(4):932–938, 2000. doi:10.1109/41.857974.
  • [27] D. Sosa-Méndez, E. Lugo-González, M. Arias-Montiel, and R.A. García-García, ADAMS-MATLAB co-simulation for kinematics, dynamics, and control of the Stewart–Gough platform. International Journal of Advanced Robotic Systems, 14(4), 2017. doi: 10.1177/1729881417719824.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-826e0099-1194-4416-a981-d5b4a363faee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.