PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Comfort Analysis in the Smart Sustainable Building with Correlation Development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the experimental study of thermal comfort in the smart building of Kielce University of Technology (Poland). The experiments were conducted throughout four seasons of the year and focused on developing a modified thermal comfort correlation that could determine the thermal sensations of room users more accurately than the standard methodology. Twelve groups of volunteers participated in the study, and thermal sensations were analysed for both genders separately. Even though the thermal environment was not considered overwhelmingly favourable (with 75% of men and 60% of women providing positive assessment), thermal acceptability was high. It amounted to 90% (the same for both genders). The air temperature of 22°C proved to be most preferable. The BMI index and CO2 concentration were found to influence thermal sensations and were incorporated into a modified correlation, which provided more accurate results than the original Fanger model of thermal comfort.
Rocznik
Tom
Strony
116--127
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Kielce, Poland
Bibliografia
  • Amanowicz, Ł., Wojtkowiak, J. (2021). Comparison of single- and multipipe earth-to-air heat exchangers in terms of energy gains and electricity consumption: a case study for the temperate climate of Central Europe. Energies, 14, 8217. https://doi.org/10.3390/en14248217
  • Becker, R., Paciuk, M. (2009). Thermal comfort in residential buildings – Failure to predict by Standard model. Building and Environment, 44, 948-960. https://doi.org/10.1016/j.buildenv.2008.06.011
  • Broday, E.E., Moreto, J.A., de Paula Xavier, A.A., de Oliveira, R. (2019). The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis. International Journal of Industrial Ergonomics, 69, 1-8. https://doi.org/10.1016/j.ergon.2018.09.007
  • Dąbek, L., Ozimina, E., Picheta-Oleś, A. (2012). Dye removal efficiency of virgin activated carbon and activated carbon regenerated with Fenton's reagent. Environment Protection Engineering, 38, 5-13.
  • Dudkiewicz, E., Jeżowiecki, J. (2009). Dyskomfort lokalny na stanowisku pracy. Rocznik Ochrona Środowiska, 11, 751-759.
  • Dyvia, H.A., Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conference Series: Earth and Environmental Science, 622, 012019. https://doi.org/10.1088/1755- 1315/622/1/012019
  • Fanger, P.O. (1974). Thermal Comfort, Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press.
  • Indraganti, M., Ooka, R., Rijal, H.B. (2013). Thermal comfort in offices in summer: Findings from a field study under the 'setsuden' conditions in Tokyo, Japan. Building and Environment, 61, 114-132. https://doi.org/10.1016/j.buildenv.2012.12.008
  • Indraganti, M., Ooka, R., Rijal, H.B. (2015). Thermal comfort in offices in India: Behavior adaptation and the effect of age and gender. Building and Environment, 103, 284-295. http://dx.doi.org/10.1016/j.enbuild.2015.05.042
  • ISO Standard 7730 (2005). Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; Geneva, Switzerland, 2005.
  • Kuśmierek, K., Dąbek, L., Świątkowski, A., Syga, P. (2014). Influence of chlorine atom number in chlorophenols molecules on their adsorption on activated Carbon. Fresenius Environmental Bulletin, 23(3), 947-951.
  • Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Środowiska, 21(2), 1253-1262.
  • Krawczyk, N., Dębska, L., Piotrowski J.Zb., Honus, S., Majewski, G. (2023). Validation of the Fanger model and assessment of SBS symptoms in the lecture room. Rocznik Ochrona Środowiska, 25, 68-76. https://doi.org/10.54740/ros.2023.008
  • Laouadi, A. (2022). A new general formulation for the PMV thermal comfort index. Buildings, 12, 1572. https://doi.org/10.3390/buildings12101572
  • Manu, S., Shukla, Y., Rawal, R., Thomas, L.E., de Dear, R. (2016). Field study of thermal comfort cross multiple climate Jones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 98, 55-70. https://doi.org/10.1016/j.buildenv.2015.12.019
  • Maliszewska, A., Szkarowski, A., Chernykh, A. (2019). Normative problems of the nitrogen oxides concentration limiting in the human residence environment. Rocznik Ochrona Środowiska, 21, 1328-1342.
  • Niza, I.L., Broday, E.E. (2022). An analysis of thermal comfort models: which one is suitable model to assess thermal reality in Brazil? Energies, 15, 5429. https://doi.org/10.3390/en15155429
  • Pafcuga, M., Holubcik, M., Durcansky, P., Kapjor, A., Malcho, M. (2021). Small heat source used for combustion of wheat-straw pellets. Applied Sciences, 11(11), 5239. https://doi.org/10.3390/app11115239
  • Pavlenko, A.M. (2019). Change of emulsion structure during heating and boiling. International Journal of Energy for a Clean Environment, 20(4), 291-302. https://doi.org/10.1615/InterJEnerCleanEnv.2019032616
  • Pavlenko, A.M., Koshlak, H. (2021). Intensification of gas hydrate formation processes by renewal of interfacial area between phases. Energies, 14(18), 5912. https://doi.org/10.3390/en14185912
  • Testo (2023), technical data, https://www.testo.com/pl-PL/ (accessed in April 2023)
  • Wojtkowiak, J., Amanowicz, Ł., Mróz, T. (2019). A new type of cooling ceiling panel with corrugated surface – Experimental investigation. International Journal of Energy Research, 43. https://doi.org/10.1002/er.4753
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8269a3cb-ddc9-4939-bcd9-67654582eedd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.