PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling, simulation and experimental studies of the axially excited spatial double physical pendulum coupled by universal joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Jubilee Symposium Vibrations In Physical Systems (25 ; 15-19.05.2012 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
We are aimed on developing the physical and mathematical model of a novel, spatial, double physical pendulum being coupled by two universal joints. The active part of first joint is axially excited by a non-constant periodic torque. In addition, the influence of gravitational field and viscous damping force of joint's bearings is taken into account. The numerical simulation, as well as the experimental studies revealed a wide spectrum of nonlinear phenomena. Chaotic, quasi-periodic and periodic orbits are detected and studied.
Rocznik
Tom
Strony
47--52
Opis fizyczny
Bibliogr. 7 poz., il., wykr.
Twórcy
  • Department of Automation and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924 Lodz, Poland
autor
  • Department of Automation and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924 Lodz, Poland
autor
  • Department of Automation and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924 Lodz, Poland
Bibliografia
  • 1. N. Phillips, What Makes the Foucault Pendulum Move among the Stars?, Science & Education, 13 (2004) 653-661.
  • 2. M. Rossi, L. Zaninetti, The cubic period-distance relation for the Kater reversible pendulum, Central European Journal of Physics, 3(4) (2005) 636-659.
  • 3. S.-T. Wu, Active pendulumvibration absorbers with a spinning support, Journal of Sound and Vibration, 323(1-2), (2009) 1-16.
  • 4. O. Gottlieb, G. Habib, Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum, Journal of Vibration and Control, doi: 10.1177/1077546310395969 (2011).
  • 5. J. Shen, A.K. Sanyal, N.A. Chaturvedi, D. Bernstein, H. McClamroch, Dynamics and control of a 3D pendulum, 43rd IEEE CDC, 1 (2004) 323-328.
  • 6. J. Awrejcewicz, G. Kudra, G. Wasilewski, Chaotic zones in triple pendulum dynamics observed experimentally and numerically, Applied Mechanics and Materials, 9 (2008) 1-17.
  • 7. J.E. Marsden, J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. Angew. Math. Phys., 44(1) (1993) 17-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82620341-137f-4ad4-898b-cca7b232c3e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.