PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design and analysis of passive LC3 component Boost-SEPIC Converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projektowanie i analiza pasywnego konwertera LC3 Component Boost SEPIC
Języki publikacji
EN
Abstrakty
EN
A cascaded DC-DC LC3 Boost-SEPIC converter is proposed and analyzed in this paper. In addition, the AC-DC topology and closed-loop topology of the converter are explored. The proposed DC-DC converter is capable of delivering maximum efficiency of 98.06%. For the AC-DC topology of the proposed converter, the peak efficiency of the converter is 97.77%. With the use of a controller, the performance of the AC-DC topology improved. Input THD reduced to 11.05%, and the input power factor of the converter increased to 0.983. Load analyses of both DC-DC and AC-DC topologies of the proposed converter are also carried out. Simulations of the converter are conducted using PSIM 12.0 software to facilitate the results.
PL
W artykule zaproponowano i przeanalizowano kaskadowy konwerter DC-DC LC3 Boost-SEPIC. Ponadto badana jest topologia ACDC i topologia pętli zamkniętej konwertera. Proponowany konwerter DC-DC jest w stanie zapewnić maksymalną sprawność 98,06%. Dla topologii AC-DC proponowanego konwertera, szczytowa sprawność konwertera wynosi 97,77%. Dzięki zastosowaniu kontrolera poprawiono wydajność topologii AC-DC. THD wejściowe zmniejszono do 11,05%, a współczynnik mocy wejściowej konwertera wzrósł do 0,983. Przeprowadzane są również analizy obciążenia zarówno topologii DC-DC, jak i AC-DC proponowanego przekształtnika. Symulacje konwertera są przeprowadzane przy użyciu oprogramowania PSIM 12.0, aby ułatwić uzyskanie wyników.
Rocznik
Strony
70--75
Opis fizyczny
Bibliogr. 24 poz. rys., tab.
Twórcy
  • Islamic University of Technology, Board Bazar, Gazipur-1704, Dhaka, Bangladesh
  • Military Institute of Science and Technology, Dhaka1216, Bangladesh
autor
  • Ahsanullah University of Science and Technology, 141-142, Love Road, Tejgaon, Dhaka1208, Bangladesh
  • Islamic University of Technology, Board Bazar, Gazipur-1704, Dhaka, Bangladesh
Bibliografia
  • 1. B. and B.K., "Power electronics, smart grid, and renewable energy systems," in Proceedings of the IEEE 105.11 (2017): 2011-2018.
  • 2. M. Chojowski, R. Stala, A. Mondzik and A. Penczek, "SiC-Based Magnetic-less DC-DC Converter with Wide Temperature Range Operation," Przeglad Elektrotechniczny, pp. 56-63, 2021.
  • 3. R. Stala, A. Mondzik and A. Kawa, "Resonant-mode Switched-Capacitor DC-DC Converter With Inductance on PCB. An Analysis and Comparison of Parameters," Przeglad Elektrotechniczny, vol. 04, pp. 205-209, 2016.
  • 4. Batarseh, Issa, and Ahmad Harb. "dc-ac Inverters." Power Electronics. Springer, Cham, 2018. 575-661.
  • 5. J. Kathiresan, S.K.N and J. Gnanavadivel, "Design and implementation of modified SEPIC high gain DC-DC converter for DC microgrid applications," International Transactions on Electrical Energy Systems, vol. 31, 2021.
  • 6. C. Muranda, E. Ozsoy, S. Padmanaban, M.S. Bhaskar, V. Fedák and V. K. Ramachandaramurthy, "Modified SEPIC DC to-DC boost converter with high output-gain configuration for renewable applications," 2017 IEEE Conference on Energy Conversion (CENCON), pp. 317-322, 2017.
  • 7. A.J. Sabzali, E.H. Ismail and H.M. Behbehani, "High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications," Renewable Energy, vol. 82, pp. 44-53, 2015.
  • 8. S. Saravanan and N.R. Babu, "Design and Development of Single Switch High Step-Up DC–DC Converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, pp. 855-863, 2018.
  • 9. W. Wu, H. Wang, Y. Liu and F. Blaabjerg, "A Dual-Buck–Boost AC/DC Converter for DC Nanogrid With Three Terminal Outputs," IEEE Transactions on Industrial Electronics, vol. 64, pp. 295-299, 2017.
  • 10. T. Shanthi, S.U. Prabha and K. Sundaramoorthy, "Non-Isolated n-Stage High Step-up DC-DC Converter for Low Voltage DC Source Integration," IEEE Transactions on Energy Conversion, vol. 36, pp. 1625-1634, 2021.
  • 11. S.A. Ansari and J.S. Moghani, "A Novel High Voltage Gain Noncoupled Inductor SEPIC Converter," IEEE Transactions on Industrial Electronics, vol. 66, pp. 7099-7108, 2019.
  • 12. M.R. Banaei and H.F. Bonab, "A High Efficiency Nonisolated Buck–Boost Converter Based on ZETA Converter," IEEE Transactions on Industrial Electronics, vol. 67, pp. 1991-1998, 2020.
  • 13. A. Mostaan, J. Yuan, Y.P. Siwakoti, S. Esmaeili and F. Blaabjerg, "A Trans-Inverse Coupled-Inductor Semi-SEPIC DC/DC Converter With Full Control Range," IEEE Transactions on Power Electronics, vol. 34, pp. 10398-10402, 2019.
  • 14. S. Gao, Y. Wang, Y. Guan and D. Xu, "A High-Frequency High Voltage Gain Modified SEPIC With Integrated Inductors," IEEE Transactions on Industry Applications, vol. 55, pp. 7481-7490, 2019.
  • 15. P.K.M. e.al., "A high gain modified SEPIC DC-to-DC boostconverter for renewable energy application," 2017 IEEE Conference on Energy Conversion (CENCON), pp. 300-304, 2017.
  • 16. S. Nahar and M. B. Uddin, "Analysis the performance of interleaved boost converter," 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), pp. 547-551, 2018.
  • 17. Y. Onal and Y. Sozer, "A new single switch bridgeless SEPICPFC converter with low cost, low THD and high PF," in 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 2015.
  • 18. N. Molavi, M. Maghsoudi and H. Farzanehfard, "Quasi-Resonant Bridgeless PFC Converter With Low Input Current THD," IEEE Transactions on Power Electronics, vol. 36, pp. 7965-7972, 2021.
  • 19. J. Baek, M.-H. Park, T. Kim and H.-S. Youn, "Modified PowerFactor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger," Energies 2021, vol. 14, p. 605, 2021.
  • 20. K. Y. e. al., "Optimal Switching Frequency Variation Range Control for Critical Conduction Mode Boost Power Factor Correction Converter," IEEE Transactions on Industrial Electronics, vol. 68, pp. 1197-1209, 2021.
  • 21. Z. Chen, P. Davari and H. Wanng, "Single-Phase Bridgeless PFC Topology Derivation and Performance Benchmarking," IEEE Transactions on Power Electronics, vol. 35, pp. 9238-9250, 2020.
  • 22. J. Han, J. Baek, Y. Jeong, C. Yeon and G. Moon, "A simple THD improving method for CCM boost PFC converter under mixed conduction mode operation," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), pp. 466-470, 2017.
  • 23. H. Zhu, D. Liu, X. Zhang and F. Qu, "Reliability of Boost PFC Converters with Improved EMI Filters," Electronics 2018, p. 413, 2018.
  • 24. M. D. Rahman, M. S. Kabir, M. N. Rabbi, M. A. Hassan Sarker and D. G. Sarowar, "Single Phase AC-DC Cascaded Boost-SEPIC (CBS) Converter for Improved Power Quality at High Duty Cycle," in International Conference on Computing Methodologies and Communication, 2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82614f73-d82a-4a5b-af1d-8c91be207245
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.