PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental studies of intact sediment cores from the Gulf of Riga, Baltic Sea, were conducted to estimate the response of sediment nutrient fluxes to various near-bottom water oxygen conditions. The experiment was performed in the laboratory using a batch-mode assay type system on the sediment cores held at 4°C and oxygen concentrations maintained at 1, 2, 3, 4 and 5 mg l-1. The results from the experiment were subsequently used to optimise the fit of the sediment denitrification sub-model of the Gulf of Riga basin. Sediment-water fluxes of phosphate were low and directed out of the sediments under all treatments, demonstrating a general decreasing tendency with increasing near-bottom water oxygen concentration. The sediment-water fluxes of ammonium and nitrate+nitrite demonstrated opposing trends: ammonium fluxes decreased whereas nitrate+nitrite fluxes increased with rising near-bottom water oxygen concentration. The modelled fluxes agreed well with the measured ones, with correlation coefficients of 0.75, 0.63 and 0.88 for ammonium, nitrate+nitrite and phosphate fluxes respectively. The denitrification rate in sediments was simulated at oxygen concentrations from -2 to 10 mg l-1. At oxygen concentrations <2 mg l-1 the modelled denitrification was sustained by nitrate transport from water overlying the sediments. With increasing oxygen concentrations the simulated denitrification switched from the process fuelled by nitrates originating from the overlying water (Dw) to one sustained by nitrates originating from the coupled sedimentary nitrification – denitrification (Dn). Dn reached its maximum at an oxygen concentration of 5 mg l-1.
Czasopismo
Rocznik
Strony
711--735
Opis fizyczny
Bibliogr. 58 poz., mapki, tab., wykr.
Twórcy
autor
  • Latvian Institute of Aquatic Ecology, 8 Daugavgrivas St., LV–1048, Riga, Latvia
  • Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, D–18119 Rostock, Germany
  • Latvian Institute of Aquatic Ecology, 8 Daugavgrivas St., LV–1048, Riga, Latvia
  • Latvian Institute of Aquatic Ecology, 8 Daugavgrivas St., LV–1048, Riga, Latvia
  • Baltic Nest Institute, Baltic Sea Centre, Stockholm University, SE–106 91, Stockholm, Sweden
autor
  • Latvian Institute of Aquatic Ecology, 8 Daugavgrivas St., LV–1048, Riga, Latvia
autor
  • Latvian Institute of Aquatic Ecology, 8 Daugavgrivas St., LV–1048, Riga, Latvia
Bibliografia
  • [1]. Berzinsh V., 1980, Interannual and seasonal changes of water salinity in the Gulf of Riga, Rybohhozyaistvennye issledovanya, (BaltNIIRKH), Riga, Avots 15, 3-12, (in Russian).
  • [2]. Blomqvist S., Abrahamsson B., 1985, An improved Kajak-type gravity core sampler for soft bottom sediments, Swiss J. Hydrology, 47 (1), 81-84, http://dx.doi.org/10.1007/BF02538187
  • [3]. Carman R., Wulff F., 1989, Adsorption capacity of phosphorus in Baltic Sea sediments, Estuar. Coast. Shelf Sci., 29 (5), 447-456, http://dx.doi.org/10.1016/0272-7714(89)90079-6
  • [4]. Carman R., Aigars J., Larsen B., 1996, Carbon and nutrient geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea, Mar. Geol., 134 (1), 57-76, http://dx.doi.org/10.1016/0025-3227(96)00033-3
  • [5]. Carstensen J., Andersen J. H., Gustafsson B. G., Conley D. J., 2014, Deoxygenation of the Baltic Sea during the last century, PNAS, 111 (15), 5628-5633, http://dx.doi.org/10.1073/pnas.1323156111
  • [6]. Cole J. A., Brown C. M., 1980, Nitrite reduction to ammonium by fermentative bacteria: a short circuit in the biological nitrogen cycle, FEMS Microbiol. Lett., 7 (2), 65-72, http://dx.doi.org/10.1111/j.1574-6941.1980.tb01578.x
  • [7]. Conley D. J., Carstensen J., Aerteb jerg G., Christensen P. B., Dalsgaard T., Hansen J. L. S., Josefson A. B., 2007, Long-term changes and impacts of hypoxia in Danish coastal waters, Ecol. Appl., 17, 165-184, http://dx.doi.org/10.1890/05-0766.1
  • [8]. Conley D., Humborg C., Rahm L., Savchuk O., Wulff F., 2002, Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry, Environ. Sci. Technol., 36 (24), 5315-5320, http://dx.doi.org/10.1021/es025763w
  • [9]. Conley D. J., Johnstone R. W., 1995, Biogeochemistry of N, P and Si in Baltic Sea sediments: response to a simulated deposition of a spring diatom bloom, Mar. Ecol.-Prog. Ser., 122, 265-276, http://dx.doi.org/10.3354/meps122265
  • [10]. Conley D. J., Carstensen J., Aigars J., Axe P., Bonsdorff E., Eremina T., Haahti B. M., Humborg C., Jonsson P., Kotta J., Lännegren C., Larsson U., Maximov A., Medina M. R., Łysiak-Pastuszak E., Remeikaite-Nikiene N., Walve J., Wilhelms S., Zillen L., 2011, Hypoxia is increasing in the coastal zone of the Baltic Sea, Environ. Sci. Technol., 45 (16), 6777-6783, http://dx.doi.org/10.1021/es201212r
  • [11]. Dalsgaard T., Nielsen L. P., Brotas V., Viaroli P., Underwood G., Nedwell D., Sunbäck K., Rysgaard S., Miles A., Bartoli M., Dong L., Thornton D. C. O., Ottosen L. D. M., Castaldelli G., Risgaard-Petersen N., 2011, Protocol handbook for NICE - nitrogen cycling in estuaries: a project under the EU research programme: marine science and technology (MAST III), Nat. Environ. Res. Inst., Silkeborg, Denmark, 43 pp.
  • [12]. Dalsgaard T., De Brabandere L., Hall P. O. J., 2013, Denitrification in the water column of the central Baltic Sea, Geochim. Cosmochim. Acta., 106, 247-260, http://dx.doi.org/10.1016/j.gca.2012.12.038
  • [13]. Deutsch B., Forster S., Wilhelm M., Dippner J. W., 2010, Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics, Biogeosciences, 7 (10), 3259-3271, http://dx.doi.org/10.5194/bg-7-3259-2010
  • [14]. Diaz R. J., Rosenberg R., 2008, Spreading dead zones and consequences for marine ecosystems, Science, 321 (5891), 926-929, http://dx.doi.org/10.1126/science.1156401
  • [15]. Eilola K., Meier H. E. M., Almroth E., 2009, On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study, J. Marine Syst., 75 (1-2), 163-184.
  • [16]. Fennel K., Brady D., DiToro D., Fulweiler R. W., Gardner W. S., Giblin A., McCarthy M. J., Rao A., Seitzinger S., Thouvenot-Korppoo M., Graig T., 2008, Modeling denitrification in aquatic sediments, Biogeochemistry, 93 (1-2), 159-178, http://dx.doi.org/10.1007/s10533-008-9270-z
  • [17]. Fonselius S., 1969, Hydrography of the Baltic Deep Basins III, Fish. Bd Sweden, Ser. Hydrography, Rep. 23, 97 pp.
  • [18]. Graham L. P., Deliang C., Christensen O. B., Kjellström E., Krysanova V., Markus Meier H. E., Radziejewski M., Räisánen J., Rockel B., Ruosteeno ja K., 2008, Projections of future anthropogenic climate change, [in:] Assessment of climate changes for the Baltic Sea basin, H.-J. Bolle, M. Menenti & I. Rasool (eds.), Springer-Verlag, Berlin, Heidelberg, 133-219, http://dx.doi.org/10.1007/978-3-540-72786-6_3
  • [19]. Grasshoff K., Ehrhardt M., Kremling K., 1983, Methods of seawater analysis, 2nd edn., Verlag Chemie, Weinheim, 419 pp.
  • [20]. Gunnars A., Blomqvist S., 1997, Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions - an experimental comparison of freshwater and brackish-marine systems, Biogeochemistry, 37, 203-226, http://dx.doi.org/10.1023/A:1005744610602
  • [21]. Hansson M., Andersson L., Axe P., 2011, Areal extent and volume of anoxia and hypoxia in the Baltic Sea, 1960-2011, SMHI Rep. Oceanogr. No. 42, 63 pp.
  • [22]. HELCOM, 2010, Ecosystem Health of the Baltic Sea 2003-2007, Balt. Sea Environ. Proc. No. 122, 17 pp.
  • [23]. HELCOM, 2013, Review of the Fifth Baltic Sea Pollution Load Compilation for the 2013 HELCOM Ministerial Meeting, Balt. Sea Environ. Proc. No. 141
  • [24]. Henriksen K., Kemp M. W., 1988, Nitrification in estuarine and coastal marine sediments, [in:] Nitrogen cycling in coastal marine environments T. H. Blackburn & J. Sorensen (eds.), John Wiley & Sons, Chichester, 451 pp.
  • [25]. Hietanen S., Kuparinen J., 2008, Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia, 596 (1), 67-77, http://dx.doi.org/10.1007/s10750-007-9058-5
  • [26]. Hietanen S., Jäntti H., Buizert C., Jürgens K., Labrenz M., Voss M., Kuparinen J., 2012, Hypoxia and nitrogen processing in the Baltic Sea water column, Limnol. Oceanogr., 57 (1), 325-337.
  • [27]. Ingall E. D., Jahnke R., 1994, Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters, Geochim. Cosmochim. Acta, 58 (11), 2571-2575, http://dx.doi.org/10.1016/0016-7037(94)90033-7
  • [28]. Ingall E. D., Jahnke R., 1997, Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis, Marine Geol., 139 (1-4), 219-229.
  • [29]. Jäntti H., Hietanen S., 2012, The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea, Ambio, 41 (2), 161-169, http://dx.doi.org/10.1007/s13280-011-0233-6
  • [30]. Jenkins M. C., Kemp W. M., 1984, The coupling of nitrification and denitrification in two estuarine sediments, Limnol. Oceanogr., 29 (3), 609-619, http://dx.doi.org/10.4319/lo.1984.29.3.0609
  • [31]. Jensen M. K., Lomstein E., Sorensen J., 1990, Benthic NH4+ and NO3- flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark, Mar. Ecol.-Prog. Ser., 61 (1-2), 87-96, http://dx.doi.org/10.3354/meps061087
  • [32]. Jensen H. S., Mortensen P. B., Andersen F. O., Rasmussen E., Jensen A., 1995, Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark, Limnol. Oceanogr., 40 (5), 908-917, http://dx.doi.org/10.4319/lo.1995.40.5.0908
  • [33]. Kemp W. M., Sampou P., Caffrey J., Mayer M., Henriksen K., Boynton W. R., 1990, Ammonium recycling versus denitrification in Chesapeake Bay sediments, Limnol. Oceanogr., 35 (7), 1545-1563, http://dx.doi.org/10.4319/lo.1990.35.7.1545
  • [34]. Kiirikki A., Lehtoranta J., Inkala A., Pitkänen H., Hietanen S, Hall P. O. G., Tenberg A., Koponen J., Sarkkula J., 2006, A simple sediment process description suitable for 3D-ecosystem modelling - Development and testing in the Gulf of Finland, J. Marine Syst., 61 (1-2), 55-66, http://dx.doi.org/10.1016/j.jmarsys.2006.02.008
  • [35]. Koop K., Boynton W. R., Wulff F., Carman R., 1990, Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea, Mar. Ecol.-Prog. Ser., 63, 65-77, http://dx.doi.org/10.3354/meps063065
  • [36]. Kristensen E., 2000, Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals, Hydrobiologia, 426 (1), 1-24, http://dx.doi.org/10.1023/A:1003980226194
  • [37]. McCarthy M. J., McNeal K. S., Morse J. W., Gardner W. S., 2008, Bottom- water hypoxia effects on sediment-water interface nitrogen transformations in a seasonally hypoxic, shallow bay (Corpus Christi Bay, TX, USA), Estuar. Coasts, 31 (3), 521-531, http://dx.doi.org/10.1007/s12237-008-9041-z
  • [38]. Meier H. E. M., Müller-Karulis B., Andersson H. C., Dieterich C., Eilola K., Gustafsson B. G., Höglund A., Hordoir R., Kuznetsov I., Neumann T., Ranjbar Z., Savchuk O. P., Schimanke S., 2012, Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: A multi- model ensemble study, Ambio, 41 (6), 558-573, http://dx.doi.org/10.1007/s13280-012-0320-3
  • [39]. Mort H. P., Slomp C. P., Gustafsson B. G., Andersen T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Acta, 74 (4), 1350-1362, http://dx.doi.org/10.1016/j.gca.2009.11.016
  • [40]. Müller-Karulis B., Aigars J., 2011, Modeling the long-term dynamics of nutrients and phytoplankton in the Gulf of Riga, J. Marine Syst., 87 (3-4), 161-176, http://dx.doi.org/10.1016/j.jmarsys.2011.03.006
  • [41]. Nielsen L. P., 1992, Denitrification in sediment determined from isotope pairing, FEMS Microbiol. Ecol., 9 (4), 357-362, http://dx.doi.org/10.1111/j.1574-6968.1992.tb04828.x
  • [42]. Nixon S. W., Granger S. L., Nowicki B. L., 1995, An assessment of the annual mass balance of carbon, nitrogen and phosphorus in Narragansett Bay, Biogeochemistry, 35, 15-61.
  • [43]. Ojaveer E. (ed.), 1995, Ecosystem of the Gulf of Riga between 1920 and 1990, Estonian Acad. Sci., Tallinn, 277 pp.
  • [44]. Omstedt A., Axell L. B., 2003, Modelling the variations of salinity and temperature in the large Gulfs of the Baltic Sea, Cont. Shelf Res., 23, 265-294, http://dx.doi.org/10.1016/S0278-4343(02)00207-8
  • [45]. Rahm L., Danielsson Å., 2001, Statistical analysis of spatial and temporal variations in the Baltic Sea, [in:] A system analysis of the Baltic Sea, F. Wulff, L. Rahm & P. Larsson (eds.), Ecol. Ser. 148, Springer-Verlag, Berlin, 329-351.
  • [46]. Reigstad M., Heiskanen S. A., Wassmann P., 1999, Seasonal and spatial variation of suspended and sedimented nutrients (C, N, P) in the pelagic system of the Gulf of Riga, J. Marine Syst., 23, 211-232, http://dx.doi.org/10.1016/S0924-7963(99)00059-7
  • [47]. Rütting T., Boeckx P., Müller C., Klemedtsson L., 2011, Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle, Biogeosciences, 8, 1779-1791, http://dx.doi.org/10.5194/bg-8-1779-2011
  • [48]. Savchuk O. P., 2002, Nutrient biogeochemichal cycles in the Gulf of Riga: scaling up field studies with a mathematical model, J. Marine Syst., 32, 253-280, http://dx.doi.org/10.1016/S0924-7963(02)00039-8
  • [49]. Savchuk O. P., Wulff F., 2009, Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea, Hydrobiologia, 629 (1), 209-224, http://dx.doi.org/10.1007/s10750-009-9775-z
  • [50]. StÅlnacke P., Grimvall A., Sundblad K., Tonderski A., 1999, Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970-1993, Environ. Monitor. Assess., 58, 173-200, http://dx.doi.org/10.1023/A:1006073015871
  • [51]. Stockenberg A., Johnstone R. W., 1997, Benthic denitrification in the Gulf of Bothnia, Estuar. Coast. Shelf Sci., 45 (6), 835-843, http://dx.doi.org/10.1006/ecss.1997.0271
  • [52]. Tamminen T., Seppálä J., 1999, Nutrient pools, transformations, ratios, and limitation in the Gulf of Riga, the Baltic Sea, during four successional stages, J. Marine Syst., 23 (1-3), 83-106, http://dx.doi.org/10.1016/S0924-7963(99)00052-4
  • [53]. Tuominen L., Heinánen A., Kuparinen J., Nielsen L. P., 1998, Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper, Mar. Ecol.-Prog. Ser., 172, 13-24, http://dx.doi.org/10.3354/meps172013
  • [54]. Vanderborght J. P., Billen G., 1975, Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr., 20, 953-961, http://dx.doi.org/10.4319/lo.1975.20.6.0953
  • [55]. Vanderborght J. P., Wollast R., Billen G., 1977, Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis, Limnol. Oceanogr., 22, 794-803, http://dx.doi.org/10.4319/lo.1977.22.5.0787
  • [56]. Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea), Estuar. Coast. Shelf Sci., 57(1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7
  • [57]. Yurkovskis A., Wulff F., Rahm L., Andrushaitis A., Rodrigues-Medina M., 1993, A nutrient budget of the Gulf of Riga, Baltic Sea, Estuar. Coast. Shelf Sci., 37 (2), 113-127, http://dx.doi.org/10.1006/ecss.1993.1046
  • [58]. Zillén L., Conley D. J., Andrén T., Andrén E., Björck S., 2008, Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact, Earth-Sci. Rev., 91 (1-4), 77-92, http://dx.doi.org/10.1016/j.earscirev.2008.10.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82561765-59fe-4f2c-8f15-c19076b2dac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.