PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Microbiological Processes in the Soil of a Two-Year Fallow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high degree of ploughing the soils is a destabilization factor of agrolandscapes and intensification of the erosion processes. Therefore, there arises a need to study the direction of the soil processes during the transfer of the arable land into a state of fallow. The state of microbiocenosis of a two-year-old abandoned land (fallow) was investigated using the gray forest soil in the variants of spontaneous overgrowth, sowing of grass mixtures and sowing of grass mixtures with simultaneous optimization of mineral nutrition of the phytocenosis as an example. It has been established that the least stable microbiocenosis is formed during the cultivation of the grass mixtures, which is characterized by the minimum total number of microorganisms (647.1 million CFU•g–1 of absolutely dry soil) and the minimum number of significant relations between the constituents (components) of the microbial community (98). The total number of microorganisms in the microbiocenosis of the spontaneous overgrowth variant and the legume-grass mixture exceeds that of the cereal grass mixture variant by 6.29 and 34.8%, respectively. A similar indicator for the total number of significant relations was 4.08%. Application of mineral fertilizers intensifies the process of mineralization of nitrogen compounds and slows down the consumption of the soil organic matter in the variants of sudden recovery of phytocenosis and cultivation of the legume-cereal grass mixture. The soil of the variant of the grass mixture is characterized by minimum total biological activity; it is 1.33 and 33.2% lesser than the total biological activity of the variants of spontaneous overgrowth and cultivation of the legume-grass mixture.
Słowa kluczowe
Rocznik
Strony
309--316
Opis fizyczny
Bibliogr. 22 poz., tab.
Twórcy
  • National Science Center, Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine, 2-b, Mashynobudivnykiv Str., Chabany vil., Kyiv-Sviatoshyn Dist., UA 08162, Kyiv Region, Ukraine
  • National Science Center, Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine, 2-b, Mashynobudivnykiv Str., Chabany vil., Kyiv-Sviatoshyn Dist., UA 08162, Kyiv Region, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., Kyiv, UA 03041, Ukraine
  • National Science Center, Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine, 2-b, Mashynobudivnykiv Str., Chabany vil., Kyiv-Sviatoshyn Dist., UA 08162, Kyiv Region, Ukraine
  • Latvia University of Life Sciences and Technologies, 2, Liela str., Jelgava, LV-3001, Latvia
Bibliografia
  • 1. Adamchuk V., Bulgakov V., Nadykto V., Ivanovs S. 2020. Investigation of tillage depth of black fallow impact upon moisture evaporation intensity. Engineering for rural development, 19, 377–383.
  • 2. Alef K., Nannipier P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Elsevier: Academy Press. 425. DOI: 10.1016/B978-0-12-513840-6.X5014-9
  • 3. Anderson J.P., Post W.M., Kwon K.C. 2000. Soil carbon sequestration and land-use change: processes and potential. Global change biology, 6, 77–82
  • 4. Bogovin A., Ptashnik M., Dudnik S. 2017. Restoration of productive, ecologically stable herbaceous biogeocenoses on anthropotransformed edaphotopes: monograph. Kyiv: Center for Educational Literature, 2017, 356.
  • 5. Bogovin A., Ptashnik M. 2020. Ecological-biological and agrotechnological bases of increase of productivity of meadows of Ukraine (Monograph). Vinnytsia: Creatives, 504. (In Ukrainian)
  • 6. Bulgakov V., Gadzalo I., Adamchuk V., Demydenko O., Velichko V., Nowak J., Ivanovs S. 2022. Dynamics of the humus content under different chernozem treatment. Journal of Ecological Engineering, 23(6), 118–128. https://doi.org/10.12911/22998993/147862
  • 7. Falkengren-Grerup U., Brink D-J., Brunet J. 2005. Land use effects on soil N, P, C and pH persist over 40-80 years of forest growth on agricultural soils. Forest Ecol. Manag., 225, 74–81
  • 8. Guo L.B., Gifford R.M. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8, 345–360
  • 9. Malinovska I. 2021. Determination of specific phosphate mobilizing activity of soil microorganisms. Agriculture and crop production: theory and practice, 1(99), 43–47
  • 10. Malinovska I., Soroka O. 2009. The state of the microbiocenosis of perennial fallow with mineral fertilizers. Collection of scientific works of the Institute of Agriculture. Kyiv: Nora Print, 4, 81–87. (In Ukrainian)
  • 11. Malinovska I., Chernysh O., Romanchuk O. 2007. Features of microbial complexes of gray forest soil of fallows and agrocenoses. Collection of scientific works of the Institute of Agriculture. Kyiv: Nora Print., 2, 29–34. (In Ukrainian)
  • 12. Malynovska I., Yula V. Asanishvili N., Ptashnik М., Lyubchic A. 2021. Influence of crop species on quantity and physiological activity of rhizosphere microorganisms. Ukrainian Journal of Ecology, 11(1), 286–290. DOI: 10.15421/2021_43
  • 13. Parinkina O., Klyueva N. 1995. Microbiological aspects of the decrease in the natural fertility of soils during their agricultural use. Soil science, 5, 573–578.
  • 14. Petersen Roger G. 1994. Agricultural Field Experiments. Design and Analysis. CRC Press, 426.
  • 15. Saiko V., Bogovin A., Korsun S. 2006. Restoration of grassy biogeocenoses on arable lands withdrawn from cultivation. Bulletin of Agricultural Science, 9, 8–12.
  • 16. Shivani Khatri, Shubham Dubey, Shilpi Sharma. 2022. New and Future Developments in Microbial Biotechnology and Bioengineering Sustainable Agriculture: Microorganisms as Biostimulants: 333–344. DOI: 10.1016/B978-0-323-85163-3.00017-X
  • 17. Skuryatin Y. 2003. Optimization of the physical condition of the soil of the fallows. Bulletin of Agricultural Science, 8, 14–16.
  • 18. Soares M., Rousk J. 2019. Microbial growth and carbon use efficiency in soil: Links to fungal-bacteria dominance, SOC-quality and stoichiometry. Soil Biol. Biochem, 131, 195–205. DOI: 10.1016/j.soilbio.2019.01.010
  • 19. Šimanský V., Šrank D., Jonczak J., Juriga M. 2019. Fertilization and Application of Different Biochar Types and their Mutual Interactions Influencing Changes of Soil Characteristics in Soils of Different Textures. Journal of Ecological Engineering, 20(5), 149–164.
  • 20. Welham S.J., Gezan S.A., Clark S.J., Mead A. 2015. Statistical Methods in Biology. Design and Analysis of Experiments and Regression, Chapman and Hall/CRC, 602.
  • 21. Wojciechowski T., Mazur A., Przybylak A., Piechowiak J. 2020. Effect of Unitary Soil Tillage Energy on Soil Aggregate Structure and Erosion Vulnerability. Journal of Ecological Engineering, 21(3), 180–185.
  • 22. Zornoza C.G., Mataix-Solera J., Scow K.M., Arcenegui V.V., Mataix-Beneyto J. 2009. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Appl. Soil Ecol., 42, 315–323. https://doi.org/10.1016/j.apsoil.2009.05.011
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-825454a2-5af5-4b3e-b6bd-77666d821f09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.